Klima- und Energie-Modellregionen Energieoptimierung Strudengau

ergänzte Version

DI Dr. Horst Steinmüller Mag. Karin Fazeni Christine Luksch MMag. Martin J. Luger

September 2012

Inhaltsverzeichnis

1 <i>A</i>	Ausgangslage und regionale Strukturanalyse für die Energieregion Strudengau	1
1.1	Der Mühlviertler Ressourcenplan als großräumige Entwicklungsstrategie	3
1.2	Demographische Strukturen in der Klima- und Energie-Modellregion Strudengau .	3
1.2.1	Wohnbevölkerung sowie Altersstruktur der Bevölkerung	3
1.3	Agrarstruktur in der Klima- und Energie-Modellregion Strudengau	6
1.4	Wirtschaftliche Strukturen in der Klima- und Energie-Modellregion Strudengau	11
1.4.1	Struktur der Arbeitsstätten	11
1.4.2	Tourismusdaten	12
1.5	Energetische Strukturen in der Klima- und Energie-Modellregion Strudengau	16
1.6	Ergebnisse und Rückschlüsse aus der EGEM-Erhebung in der Region Strudengau	19
1.6.1	Heizanlagen in der Region Strudengau	19
1.6.2	Endenergiebedarf in der Energieregion Strudengau für Raumheizung und Warmwasser	20
1.6.3	Endenergiebedarf in der Energieregion Strudengau für Mobilität	20
1.6.4	Strombedarf für öffentliche Zwecke und Endenergieverbrauch in Industrie und Gewerbe	21
1.6.5	Schlussfolgerungen aus der EGEM-Erhebung für die Region Strudengau	21
	Thermische Gebäudesanierung als wesentliche Maßnahme zur Realisierung von Energieeinsparungspotentialen in der Klima- und Energie-Modellregion Strudengau	ı 22
2.1	Allgemeine Informationen und theoretische Grundlagen	23
2.1.1	Förderungen des Landes OÖ – Wohnbauförderung	23
2.1.2	Förderungen der Österreichischen Bundesregierung	29
2.1.3	Der Energieausweisausweis als Informationsinstrument	31
2.1.4	Analyse des Online-Berechnungstools von EnergyGlobe	36
2.2	Bestimmung des Sanierungspotentials	39
2.2.1	Analyse der Gebäude- und Wohnungszählung 2001	39
2.2.2	Analyse der Probezählung 2006	40
2.2.3	Gebäudealtersstruktur der Gemeinden	41
2.2.4	Sanierungsrate	41
2.2.5	Berechnung des Sanierungspotentials	45
2.3	Kosten verschiedener Sanierungmaßnahmen, inkl. Heizwärme- und CO ₂ - Einsparungspotential	48
2.3.1	Tausch von Fenstern und Außentüren	53
232	Dämmung der Kellerdecke	63

2.3.3	B Dämmung der Geschoßdecke	68
2.3.4	Dämmung der Außenwände	74
2.3.	Thermische Sanierung	82
2.3.6	Gesamtsanierung (thermische Sanierung und Fenster- bzw. Außentürentausch)	89
2.3.7	Zusammenfassung Sanierungsmaßnahmen	96
3	Strategien, Leitlinien und Leitbilder in der Energieregion Strudengau	.108
3.1	Inhalt bereits bestehender Leitbilder und Weiterentwicklung dieser	. 108
3.2	Energiepolitische Ziele und Prioritäten in der Energieregion Strudengau	. 111
3.3	Managementstrukturen zur Umsetzung der Strategien und Leitbilder in der Energieregion Strudengau	
4	Stärken-Schwächen-Analyse (SWOT-Analyse) für die Energieregion Strudengau	.114
	Partizipation, Vernetzung und Bürgerbeteiligung im Rahmen der Tätigkeiten der Energieregion Strudengau	. 117
	Ergebnisse aus dem Kennzahlen-Monitoring und darauf aufbauende Prognosen für Projektlaufzeit und bis 2020	
7	Schwerpunktsetzung und prioritäre Umsetzungsmaßnahmen	.122
7.1	Schwerpunkt 1 – Sanierung im öffentlichen Gebäudebereich	. 123
7.2	Schwerpunkt 2 – Mobilität und E-Mobilität	. 126
7.3	Schwerpunkt 3 – Verringerung des Strombedarfs	. 127
7.4	Schwerpunkt 4 – Energieeinsparmaßnahmen im öffentlichen Bereich	. 127
7.5	Schwerpunkt 5 – Regionale Bewusstseinsbildung	. 127
7.6	Schwerpunkte der Klima- und Energie-Modellregion Strudengau	. 128
8	Zusammenfassung	.132
9	_iteraturverzeichnis	. 135
10	Anhang	.137
10.1	Sanierungspotential der Gemeinden	. 137
10.1	1 Allerheiligen	137
10.1	.2 Arbing	141
10.1	3 Bad Kreuzen	144
10.1	.4 Baumgartenberg	147
10.1		
10.1	6 Grein	153
10.1		
10.1	.8 Mitterkirchen im Marchland	159

AP 0 – Standardisierung und Konkretisierung der bestehenden Ergebnisse

10.1.9	Münzbach
10.1.10	Naarn im Marchlande
10.1.11	Perg
10.1.12	Pabneukirchen
10.1.13	Rechberg
10.1.14	St. Nikola an der Donau
10.1.15	St. Thomas am Blasenstein
10.1.16	Saxen
10.1.17	Waldhausen im Strudengau
10.1.18	Windhaag bei Perg
	änzung Schwerpunkt 1 – Altbausanierung von öffentlichen Gebäuden und amilienhäusern sowie Möglichkeiten der Sanierung bei denkmalgeschützten Objekten192
10.2.1	Sanierungsprojekt Münzbach
10.2.2	Sanierungsprojekt Windhaag196
10.2.3	Sanierungsprojekt Mauthausen
10.2.4	Sanierungsprojekt Allerheiligen
10.2.5	Sanierungsprojekt Waldhausen199
10.2.6	Siedlungsprojekt Münzbach – Entwicklung eines Ökodorfes
-	anzung Schwerpunkt 5 – Verankerung des Energiespar-Gedankens in der Strudengause als Anstoß zur Sanierung

Abbildungsverzeichnis

Abbildung 1-1: Schematische Darstellung einer Klima- und Energie-Modellregion	. 2
Abbildung 1-2: Altersstruktur der Bevölkerung der Region Strudengau	. 5
Abbildung 1-3: Altersstruktur der Bevölkerung des Bezirks Perg	. 5
Abbildung 1-4: Altersstruktur der Bevölkerung Oberösterreichs	. 6
Abbildung 1-5: Acker- und Grünlandflächen sowie Waldflächen in der Region Strudengau	. 8
Abbildung 1-6: Haupterwerbs- und Nebenerwerbsbetriebe in der Region Strudengau	10
Abbildung 1-7: Haupt- und Nebenerwerbsbetriebe im Mühlviertel	10
Abbildung 1-8: Struktur der Arbeitsstätten in der Region Strudengau	14
Abbildung 1-9: Anzahl der Beschäftigten der Unternehmen in der Region Strudengau	15
Abbildung 2-1: 3D-Modell des Modellgebäudes 1 sowie 2D-Frontalansicht	49
Abbildung 2-2 Energieausweise für das Modellgebäude 1 für BJ 1959 und 1970	50
Abbildung 2-3: 3D-Modell des Modellgebäudes 2 sowie 2D-Frontalansicht	51
Abbildung 2-4: Energieausweise für das Modellgebäude 2 für BJ 1959 und 1970	52
Abbildung 2-5: Durchschnittliche Wohnnutzfläche in m² nach Bauperioden für Oberösterreich	58
Abbildung 2-6: Frontansicht der Modellgebäudetypen, Maßnahme "Dämmung der Kellerdecke" . 6	63
Abbildung 2-7: 2D-Frontansicht der Modellgebäudetypen, Maßnahme "Dämmung der oberste Geschoßdecke"	
Abbildung 2-8: 2D-Frontansicht der Modellgebäude, Maßnahme "Dämmung der Außenwände"	75
Abbildung 2-9: 2D-Frontansicht der Modellgebäudetypen, Maßnahme "Thermische Sanierung" 8	83
Abbildung 2-10: Potential unsanierter Gebäude in Strudengau nach Gemeinde	00
Abbildung 2-11: Szenarien der Energieeinsparung - Gegenüberstellung d Sanierungsmaßnahmen nach Einsparung in den Jahren 2013, 2020 und 20301	ler 04
Abbildung 2-12: CO ₂ -Einsparungspotential der Region Strudengau bei den Einzelne Sanierungsmaßnahmen im Jahr 2030	
Abbildung 7-1: Vernetzung der Akteure in der Energieregion Strudengau	23
Abbildung 10-1: Das sogenannte "Marktfeld" in Münzbach	00
Abbildung 10-2: Parzellenplan der geplanten Öko-Siedlung in Münzbach	01

Tabellenverzeichnis

Tabelle 1-1: Wohnbevölkerung LAG Strudengau im Vergleich
Tabelle 1-2: Landwirtschaftliche Nutzflächen und Waldflächen in der Region Strudengau6
Tabelle 1-3: Bracheflächen in der Region Strudengau
Tabelle 1-4: Landwirtschaftliche Betriebe in der Region Strudengau gegliedert in Haupt- und Nebenererbsbetriebe
Tabelle 1-5: Arbeitsstätten in der Region Strudengau gegliedert nach ÖNACE 199511
Tabelle 1-6: Nächtigungszahlen in der Region Strudengau im Vergleich
Tabelle 1-7: Vergleich der Unternehmen und Beschäftigten der Region Strudengau mit dem Bezirk Perg und gesamt Oberösterreich
Tabelle 1-8: Biomasse-Nahwärmeanlagen in der Region Strudengau
Tabelle 1-9: Biogasanlagen in der Region Strudengau
Tabelle 1-10: Installierte Photovoltaikleistung in der Region Strudengau
Tabelle 1-11: Kompostieranlagen und verarbeitete Menge in der Region Strudengau
Tabelle 1-12: Kläranlagen in der Region Strudengau18
Tabelle 2-1: Sanierung von Häusern bis zu 3 Wohnungen: Grenzwerte für einzelne Bauteile 26
Tabelle 2-2: Sanierung von Häusern bis zu 3 Wohnungen: Annuitätenzuschuss für verschiedene Sanierungsstufen
Tabelle 2-3: Effizienzklassen Energieausweis
Tabelle 2-4: HWB max. für neue Wohngebäude [kWh/²a]
Tabelle 2-5: Durchschnittswerte für Wärmedurchgangskoeffizienten [W/m²K] für Bauteile verschiedener Bauperioden, Einfamilienhäuser
Tabelle 2-6: Durchschnittswerte für Wärmedurchgangskoeffizienten [W/m²K] für Bauteile verschiedener Bauperioden, Mehrfamilienhäuser
Tabelle 2-7: Gebäudebestand mit Wohnsitzangabe in Strudengau nach Bauperiode
Tabelle 2-8 Energetische Sanierung des Gebäudebestandes lt. Gebäude- und Volkszählung 200143
Tabelle 2-9: Berechnung der Gebäudesanierungsrate
Tabelle 2-10: Sanierungspotential aller Gebäudetypen und Bauperioden für die Region Strudengau46
Tabelle 2-11: Nutzenergiebedarfskennzahlen [kWh/m²a]47
Tabelle 2-12: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Region Strudengau
Tabelle 2-13: Allgemeine Gebäudedaten Modellgebäude 150
Tabelle 2-14: Allgemeine Gebäudedaten Modellgebäude 251

Tabelle 2-15:	Kosten für Einbau	, Ausbau, Ent	sorgung Fenster	und Außentü	ren (ohne Mw	/St.) 54
Tabelle 2-1			Finanzierung			
Tabelle 2-17:	Nutzenergiekenn: Außentürentau		nergieeinsparung			
Tabelle 2-18	: Barwert der En verschiedene	•	ngen durch Tau			
Tabelle 2-19	: Kumulierte Kost Kreditlaufzeit r		nahme "Tausch Annuitätenzuschu			
Tabelle 2-20	: Jährliches Eins Heizwärme de		ntial für Gebäud dengau bei Fens	•	•'	
Tabelle 2-21:	Szenarien der End	ergieeinsparur	ng Tausch von Fe	enster und Au	ußentüren	60
Tabelle 2-22:	Kosten und CO ₂ -E	Emissionen vo	r und nach Austa	ausch der Fer	nster- und Auß	3entüren6
Tabelle 2-23:	CO ₂ -Einsparungs Außentüren"		Region Struden	•		
Tabelle 2-24:	Darlehenskosten t	für die Finanzi	erung der Maßna	ahme "Dämm	ung der Kelle	rdecke" 64
Tabelle 2-25:	Nutzenergiekennz Kellerdecke"		ergieeinsparunge			_
Tabelle 2-26:	Barwert der Ene Szenarien	-	gen durch Dämn	-		
Tabelle 2-27	7: Kumulierte Ko Kreditlaufzeit,		aßnahme "Däm Annuitätenzusch	•		
Tabelle 2-28	: Jährliches Eins Heizwärme de		ntial für Gebäud dengau bei Dämi		•	
Tabelle 2-29:	Szenarien der En	ergieeinsparu	ng bei Dämmung	der Kellerde	cke	67
Tabelle 2-30	: Darlehenskoster Geschoßdeck		anzierung der M		•	
Tabelle 2-31:	Nutzenergiekennz obersten Geso		ergieeinsparunge			_
Tabelle 2-32	: Barwert der Ene verschiedene	-	gen durch Däm	-		
Tabelle 2-33:	Kumulierte Koster Kreditlaufzeit,		me "Dämmung d Annuitätenzusch			
Tabelle 2-34	: Jährliches Eins Heizwärme de		ntial für Gebäud dengau bei Dämi		•	
Tahelle 2-35	Szenarien der En	ergieeinsparu	na hei Dämmuna	der Geschof	\decke	72

	osten und CO ₂ -Emissionen vor und nach Dämmung der Keller- und obersten Geschoßdecke73
	$ ho_2$ -Einsparungspotential der Region Strudengau bei Dämmung der Keller- und obersten Geschoßdecke74
	der Modellgebäude BJ 195976
	der Modellgebäude BJ 197076
	zenergiekennzahlen und Energieeinsparungen für die Maßnahme "Dämmung der Außenwände"77
	wert der Energieeinsparungen durch Dämmung der Außenwände, verschiedene Szenarien78
	umulierte Kosten der Maßnahme "Dämmung der Außenwände" über die Kreditlaufzeit, mit und ohne Annuitätenzuschuss, mit und ohne MwSt. der Modellgebäude BJ 195978
	umulierte Kosten der Maßnahme "Dämmung der Außenwände" über die Kreditlaufzeit, mit und ohne Annuitätenzuschuss, mit und ohne MwSt. der Modellgebäude BJ 197079
	ährliches Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Region Strudengau bei Dämmung der Außenwände
Tabelle 2-45: Sze	narien der Energieeinsparung bei Dämmung der Außenwände 80
	osten und CO ₂ -Emissionen vor und nach Durchführung der Sanierung der Außenwände81
Tabelle 2-47: CO	₂ -Einsparungspotential der Region Strudengau bei Dämmung der Außenwände82
	tzenergiekennzahlen und Energieeinsparungen für die Maßnahme "Thermische Sanierung"
	rlehenskosten für die Finanzierung der Maßnahme "Thermische Sanierung" der Modellgebäude BJ 195984
	rlehenskosten für die Finanzierung der Maßnahme "Thermische Sanierung" der Modellgebäude BJ 197085
	rwert der Energieeinsparungen durch die thermische Sanierung, verschiedene Szenarien
	mulierte Kosten der Maßnahme "Thermische Sanierung" über die Kreditlaufzeit, mit und ohne Annuitätenzuschuss, mit und ohne MwSt. der Modellgebäude BJ 1959
	mulierte Kosten der Maßnahme "Thermische Sanierung" über die Kreditlaufzeit, mit und ohne Annuitätenzuschuss, mit und ohne MwSt. der Modellgebäude BJ 1970

Tabelle 2-54: Jährliches Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Region Strudengau bei thermischer Sanierung
Tabelle 2-55: Szenarien der Energieeinsparung bei thermischer Sanierung
Tabelle 2-56: Nutzenergiekennzahlen und Energieeinsparungen für die Maßnahme "Thermische Sanierung"
Tabelle 2-57: Darlehenskosten für die Finanzierung der Maßnahme "Gesamtsanierung" der Modellgebäude BJ 1959
Tabelle 2-58: Darlehenskosten für die Finanzierung der Maßnahme "Gesamtsanierung" der Modellgebäude BJ 1970
Tabelle 2-59: Barwert der Energieeinsparungen durch die thermische Gesamtsanierung, verschiedene Szenarien
Tabelle 2-60: Kumulierte Kosten der Maßnahme "Gesamtsanierung" über die Kreditlaufzeit, mit und ohne Annuitätenzuschuss, mit und ohne MwSt. der Modellgebäude BJ 195992
Tabelle 2-61: Kumulierte Kosten der Maßnahme "Gesamtsanierung" über die Kreditlaufzeit, mit und ohne Annuitätenzuschuss, mit und ohne MwSt. der Modellgebäude BJ 197092
Tabelle 2-62: Jährliches Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Region Strudengau bei Gesamtsanierung
Tabelle 2-63: Szenarien der Energieeinsparung bei Gesamtsanierung
Tabelle 2-64: Kosten und CO ₂ -Emissionen vor und nach Durchführung der Gesamtsanierung 94
Tabelle 2-65: CO ₂ -Einsparungspotential der Region Strudengau bei Gesamtsanierung
Tabelle 2-66: Gegenüberstellung Kreditszenarien und Barwert der Energieeinsparung - Thermische Sanierung und Gesamtsanierung Teil 1
Tabelle 2-67: Gegenüberstellung Kreditszenarien und Barwert der Energieeinsparung - Thermische Sanierung und Gesamtsanierung Teil 2
Tabelle 2-68: Sanierungskosten je Gebäude nach Maßnahme und Gebäudetyp99
Tabelle 2-69: Jährliches Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Region Strudengau, Gegenüberstellung der einzelnen Sanierungsmaßnahmen
Tabelle 2-70: Szenarien der Energieeinsparung: Gegenüberstellung aller Sanierungsmaßnahmen Teil 1
Tabelle 2-71: Szenarien der Energieeinsparung: Gegenüberstellung aller Sanierungsmaßnahmen Teil 2
Tabelle 2-72: CO ₂ -Einsparungspotential der Klima- und Energie-Modellregion Strudengau bei den einzelnen Sanierungsmaßnahmen
Tabelle 7-1: Endenergieeinsparung und Investitionskosten aufgrund Sanierung
Tabelle 7-2: Endenergieeinsparung und Investitionskosten aufgrund von Effizienzsteigerung und Substitution

Tabelle 7-3: Endenergieeinsparung und Investitionskosten aufgrund Solarpotentialnutzung 126
Tabelle 7-4: Zeitplan für die Umsetzung der Schwerpunkte in der Energieregion Strudengau 128
Tabelle 10-1: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Allerheiligen
Tabelle 10-2: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Allerheiligen
Tabelle 10-3: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Allerheiligen für einzelne Sanierungsmaßnahmen
Tabelle 10-4: Szenarien der Energieeinsparung Teil 1 der Gemeinde Allerheiligen
Tabelle 10-5: Szenarien der Energieeinsparung Teil 2 der Gemeinde Allerheiligen 140
Tabelle 10-6: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Arbing14
Tabelle 10-7: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Arbing
Tabelle 10-8: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Arbing für einzelne Sanierungsmaßnahmen
Tabelle 10-9: Szenarien der Energieeinsparung Teil 1 der Gemeinde Arbing
Tabelle 10-10: Szenarien der Energieeinsparung Teil 2 der Gemeinde Arbing 143
Tabelle 10-11: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Bad Kreuzen
Tabelle 10-12: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Bad Kreuzen
Tabelle 10-13: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Bad Kreuzen für einzelne Sanierungsmaßnahmen
Tabelle 10-14: Szenarien der Energieeinsparung Teil 1 der Gemeinde Bad Kreuzen145
Tabelle 10-15: Szenarien der Energieeinsparung Teil 2 der Gemeinde Bad Kreuzen146
Tabelle 10-16: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Baumgartenberg
Tabelle 10-17: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Baumgartenberg
Tabelle 10-18: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Baumgartenberg für einzelne Sanierungsmaßnahmen
Tabelle 10-19: Szenarien der Energieeinsparung Teil 1 der Gemeinde Baumgartenberg 148
Tabelle 10-20: Szenarien der Energieeinsparung Teil 2 der Gemeinde Baumgartenberg 149
Tabelle 10-21: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Dimbach

Tabelle		Sanierungspoter Gebäudetypen für	-						aller . 150
Tabelle 1		insparungspotenti Gemeinde Dimba			•				
Tabelle 1	0-24: Sz	enarien der Energ	jieeinsparun	g Teil 1 de	r Gemein	de Dimb	ach		. 151
Tabelle 1	0-25: Sz	enarien der Energ	jieeinsparun	g Teil 2 de	r Gemein	de Dimb	ach		. 152
Tabelle 1	0-26: Sa	nierungspotential	aller Gebäu	detypen ur	nd Bauper	rioden fü	r die Gen	neinde Gr	ein153
Tabelle		Sanierungspoter Gebäudetypen fül	•						aller . 153
Tabelle 1		insparungspotenti Gemeinde Grein f			•				
Tabelle 1	0-29: Sz	enarien der Energ	jieeinsparun	g Teil 1 de	r Gemein	de Grein			. 154
Tabelle 1	0-30: Sz	enarien der Energ	jieeinsparun	g Teil 2 de	r Gemein	de Grein			. 155
Tabelle 1	0-31: Sa	nierungspotential	aller Gebäu	detypen ur	nd Bauper	rioden fü	r die Gen	neinde Kla	am156
Tabelle		Sanierungspoter Gebäudetypen für	•						aller . 156
Tabelle 1		insparungspotenti Gemeinde Klam f			•				
Tabelle 1	0-34: Sz	enarien der Energ	jieeinsparun	g Teil 1 de	r Gemein	de Klam			. 157
Tabelle 1	0-35: Sz	enarien der Energ	jieeinsparun	g Teil 2 de	r Gemein	de Klam			. 158
Tabelle ′		Sanierungspotenti Mitterkichen im M		• •		•			
Tabelle		Sanierungspoter Gebäudetypen fül	•						aller . 159
Tabelle 1		insparungspotenti Gemeinde Mitterk			•				
Tabelle 1	0-39: Sz	enarien der Energ	jieeinsparun	g Teil 1 de	r Gemein	de Mitter	kirchen		. 160
Tabelle 1	0-40: Sz	enarien der Energ	jieeinsparun	g Teil 2 de	r Gemein	de Mitter	kirchen		. 161
Tabelle ′		Sanierungspotenti Münzbach		• •		•			
Tabelle		Sanierungspoter Gebäudetypen für	•						aller . 162
Tabelle 1		insparungspotenti Gemeinde Münzb			•				
Tabelle 1	0-44: Sz	enarien der Energ	jieeinsparun	g Teil 1 de	r Gemein	de Münz	bach		. 163
Tabelle 1	0-45: Sz	enarien der Energ	jieeinsparun	g Teil 2 de	r Gemein	de Münz	bach		. 164

Tabelle	10-46: S	anierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Naarn im Marchlande
Tabelle	10-47:	Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Naarn im Marchlande
Tabelle	10-48: E	Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Naarn für einzelne Sanierungsmaßnahmen
Tabelle '	10-49: S	zenarien der Energieeinsparung Teil 1 der Gemeinde Naarn
Tabelle '	10-50: S	zenarien der Energieeinsparung Teil 2 der Gemeinde Naarn
Tabelle '	10-51: Sa	anierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Perg168
Tabelle	10-52:	Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Perg
Tabelle	10-53: E	Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Perg für einzelne Sanierungsmaßnahmen
Tabelle '	10-54: S	zenarien der Energieeinsparung Teil 1 der Gemeinde Perg
Tabelle '	10-55: S	zenarien der Energieeinsparung Teil 2 der Gemeinde Perg
Tabelle	10-56:	Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Pabneukirchen
Tabelle	10-57:	Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Pabneukirchen
Tabelle	10-58: E	Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Pabneukirchen für einzelne Sanierungsmaßnahmen
Tabelle '	10-59: S	zenarien der Energieeinsparung Teil 1 der Gemeinde Pabneukirchen172
Tabelle '	10-60: S	zenarien der Energieeinsparung Teil 2 der Gemeinde Pabneukirchen 173
Tabelle	10-61:	Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Rechberg
Tabelle	10-62:	Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Rechberg
Tabelle	10-63: E	Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Rechberg für einzelne Sanierungsmaßnahmen
Tabelle '	10-64: S	zenarien der Energieeinsparung Teil 1 der Gemeinde Rechberg175
Tabelle '	10-65: S	zenarien der Energieeinsparung Teil 2 der Gemeinde Rechberg 176
Tabelle	10-66: S	Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde St. Nikola an der Donau177
Tabelle	10-67:	Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde St. Nikola an der Donau
Tabelle	10-68: E	insparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde St. Nikola für einzelne Sanierungsmaßnahmen

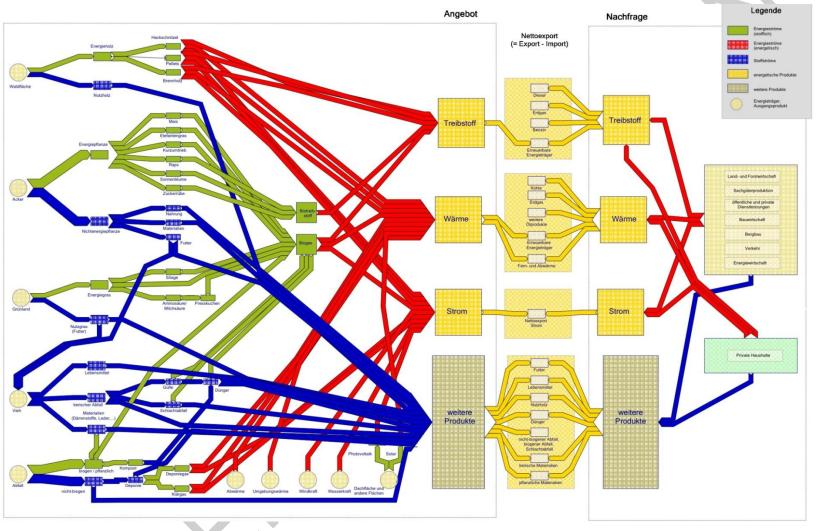
Tabelle 10-69: Szenarien der Energieeinsparung Teil 1 der Gemeinde St. Nikola
Tabelle 10-70: Szenarien der Energieeinsparung Teil 2 der Gemeinde St. Nikola 179
Tabelle 10-71: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde St. Thomas am Blasenstein
Tabelle 10-72: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde St. Thomas am Blasenstein
Tabelle 10-73: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde St. Thomas für einzelne Sanierungsmaßnahmen
Tabelle 10-74: Szenarien der Energieeinsparung Teil 1 der Gemeinde St. Thomas
Tabelle 10-75: Szenarien der Energieeinsparung Teil 2 der Gemeinde St. Thomas
Tabelle 10-76: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Saxen183
Tabelle 10-77: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Saxen
Tabelle 10-78: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Saxen für einzelne Sanierungsmaßnahmen
Tabelle 10-79: Szenarien der Energieeinsparung Teil 1 der Gemeinde Saxen
Tabelle 10-80: Szenarien der Energieeinsparung Teil 2 der Gemeinde Saxen
Tabelle 10-81: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Waldhausen im Strudengau
Tabelle 10-82: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Waldhausen im Strudengau
Tabelle 10-83: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Waldhausen für einzelne Sanierungsmaßnahmen
Tabelle 10-84: Szenarien der Energieeinsparung Teil 1 der Gemeinde Waldhausen 187
Tabelle 10-85: Szenarien der Energieeinsparung Teil 2 der Gemeinde Waldhausen 188
Tabelle 10-86: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Windhaag
Tabelle 10-87: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Windhaag
Tabelle 10-88: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Windhaag für einzelne Sanierungsmaßnahmen
Tabelle 10-89: Szenarien der Energieeinsparung Teil 1 der Gemeinde Windhaag 190
Tabelle 10-90: Szenarien der Energieeinsparung Teil 2 der Gemeinde Windhaag 191
Tabelle 10-91: Unsanierte Gebäude bzw. Neubauten in der Energieregion Strudengau 194
Tabelle 10-92: Bereits sanierte Gebäude in der Energieregion Strudengau
Tabelle 10-93: Kennzahlen des Amtsgebäudes Münzbach vor und nach der Sanierung 195

Tabelle 10-94: Kennzahlen des Wohngebäude Münzbach vor und nach der Sanierung 196
Tabelle 10-95: Kennzahlen des Schul- und Kindergartengebäudes Münzbach vor und nach der Sanierung
Tabelle 10-96: Kennzahlen der Volksschule Windhaag vor und nach der Sanierung 197
Tabelle 10-97: Kennzahlen des Wohngebäudes der Gemeinde Windhaag vor und nach der Sanierung
Tabelle 10-98: Kennzahlen des Pfarrheims Mauthausen vor und nach der Sanierung 198
Tabelle 10-99: Kennzahlen der Volksschule Allerheiligen vor und nach der Sanierung 198

1 Ausgangslage und regionale Strukturanalyse für die Energieregion Strudengau

Das Projekt "Klima- und Energie-Modellregion Strudengau" zielt darauf ab, die Klima- und Energie-Modellregion Strudengau als Klima- und Energie-Modellregion zu etablieren, indem ein Umsetzungskonzept erstellt wird und die Maßnahmen des "Mühlviertler Ressourcenplans" vor dem Hintergrund der regionalen und lokalen Erfordernisse und Potentiale konkret realisiert werden. Am Ende soll in der Region ein umfassender Entwicklungsprozess hin zu einer nachhaltigen Energiebereitstellung mit hoher regionaler Wertschöpfung eingesetzt haben.

Der Auftraggeber Klima- und Energiefonds bzw. Kommunalkredit Public Consulting beauftragt den Auftragnehmer Energieregion Strudengau GmbH mit der Erstellung eines Umsetzungskonzeptes für die Klima- und Energie-Modellregion "Verdichtung der Information und Entwicklung konkreter Umsetzungsvorschläge". Bei der Erstellung sind jedenfalls die Mindestanforderungen zur "Erstellung eines regionalen Umsetzungskonzeptes" gemäß Ausschreibungsleitfaden (Seite 4) zu berücksichtigen. Über diese allgemeinen Zielsetzungen hinaus ist insbesondere auf folgende im Antrag B068999 erwähnte Punkte einzugehen:


- Analyse der Energiebereitstellungs- und -verbrauchsituation
- Aufzeigen der Effizienzsteigerungspotentiale im Bereich der thermischen Sanierung und Raumwärme
- Aufzeigen der Wirtschaftlichkeit von Sanierungsmaßnahmen
- Von großer Bedeutung sind auch Wissenstransfer sowie Vernetzungs- und Bewusstseinsbildungsmaßnahmen

Unter Berücksichtigung der eben genannten Punkte werden mit dem Umsetzungskonzept folgende Bereiche abgedeckt:

- Aufbereitung und Weiterentwicklung der Ergebnisse der EGEM-Erhebung
- Formulierung von energiestrategischen Stärken und Schwächen der Region
- Fokussierung und Vertiefung im Bereich Sanierung und Raumwärme
- Etablierung des Energiemanagers
- Finden von mindestens zwei Umsetzungsprojekten
- Regionale Stärken/Schwächen-Analyse
- Wissenschaftliche Begleitung der Umlegung des EGEM-Berichts auf das regionale Umsetzungskonzept

Nachfolgend werden die allgemeinen Strukturdaten zu Bevölkerung, Arbeitsstätten und landwirtschaftlicher Struktur präsentiert. Diese Ausführungen dienen der Erstellung eines Regionsprofils aus dem später die Stärken und Schwächen der Region abgelesen werden können. Zu den Strukturdaten zählen unter anderem auch die infrastrukturellen Gegebenheiten. Dabei liegt das Hauptaugenmerk auf der Darstellung der Nutzung von erneuerbarer Energie und den dazugehörigen Energieerzeugungsanlagen in der Region.

Abbildung 1-1: Schematische Darstellung einer Klima- und Energie-Modellregion

Quelle: eigene Darstellung.

1.1 Der Mühlviertler Ressourcenplan als großräumige Entwicklungsstrategie

Ressourcenplan" Projekt "Mühlviertler (Entwicklung eines regional Das Bezirke Freistadt, Perg, Rohrbach und Urfahr-Umgebung; Ressourcenplanes für die Projektnummer 821845) zielte darauf ab, die Grundlagen zu schaffen, damit das Mühlviertel durch nachhaltige Wirtschaftsweise in seiner Lebensmittel-, Energie-Rohstoffversorgung in Summe zumindest ausgeglichen bilanzieren kann. Dabei kam es zur Entwicklung von Ansätzen zur Etablierung einer Klima- und Energie-Makro-Modellregion Mühlviertel. Es wurden regionale Stoffflussanalysen und Wertschöpfungsketten erstellt, die als Basis für realistische Umsetzungsmaßnahmen dienten. Dadurch wurden wichtige Grundlagen für die zukünftige Schaffung von Klima- und Energie-Modellregionen in ländlich geprägten Räumen erarbeitet. Im Zuge des Projektes kam es auch zur Einbindung und Vernetzung einer Vielzahl regionaler Stakeholder in einem strategischen Projektbeirat sowie eine damit verbundene Stärkung der regionalen Wertschöpfung. Schließlich trug der "Mühlviertler Ressourcenplan" dazu bei, eine regionale Identität zu schaffen und die Interkonnektivität der regionalen Akteure aufzuzeigen. Auch die Energieregion Strudengau war an der Erstellung des "Mühlviertler Ressourcenplanes" beteiligt, sodass die Ergebnisse des "Mühlviertler Ressourcenplanes" auch in das Umsetzungskonzept für die Klima- und Energie-Modellregion Strudengau einfließen.

1.2 Demographische Strukturen in der Klima- und Energie-Modellregion Strudengau

Eine positive demographische Entwicklung und Humankapital sind wesentliche Triebfedern einer nachhaltigen Regionalentwicklung. Zu den Stärken einer Region können unter anderem eine positive Bevölkerungsentwicklung und das Vorhandensein von gut ausgebildeten Humanressourcen gezählt werden. Um abschätzen zu können, wie es um diese Faktoren in der Klima- und Energie-Modellregion bestellt ist, sind nachfolgend sowohl die demografische Struktur der Bevölkerung in der Region im Vergleich zum restlichen Mühlviertel sowie der Ausbildungsgrad der Menschen in der Energieregion Strudengau dargestellt.

Tabelle 1-1 zeigt die Wohnbevölkerung der Region Strudengau gegliedert nach Gemeinden und im Vergleich zum Bezirk Perg, dem gesamten Mühlviertel und gesamt Oberösterreich für das Jahr 2010. In der LAG Strudengau leben rund 55 % der Bevölkerung des Bezirks Perg und ca. 13 % der Bevölkerung des Mühlviertels. Ungefähr 3 % der Bevölkerung Oberösterreichs sind in der Region Strudengau wohnhaft.

1.2.1 Wohnbevölkerung sowie Altersstruktur der Bevölkerung

Die Erhebung der Wohnbevölkerung sowie die Altersstruktur der Bevölkerung in einer Region sind wichtige Bestandteile einer regionalen Strukturanalyse. Denn neben den wirtschaftlichen Herausforderungen, denen sich periphere Regionen zusehends stellen müssen, können auch demografische Herausforderungen wie beispielsweise Abwanderung oder Überalterung der Bevölkerung Hindernisse auf dem Weg zu einer nachhaltigen Regionalentwicklung sein. Derartige Herausforderungen müssen ebenso behandelt werden, und darauf basierend können dann Maßnahmen gesetzt werden, denn nur so können Schwächen in der Region, die auf demografischen Gegebenheiten fußen, abgewandt werden.

Tabelle 1-1: Wohnbevölkerung LAG Strudengau im Vergleich

	Wohnbevölkerung 2010
Allerheiligen	1.190
Arbing	1.365
Bad Kreuzen	2.373
Baumgartenberg	1.568
Dimbach	1.054
Grein	3.090
Klam	923
Mitterkirchen	1.703
Münzbach	1.719
Naarn	3.498
Pabneukirchen	1.707
Perg	7.735
Rechberg	927
Saxen	1.709
St. Nikola	771
St. Thomas	460
Waldhausen	2.893
Windhaag	1.398
Strudengau gesamt	36.083
Bezirk Perg	65.620
Mühlviertel	268.414
Oberösterreich	1.411.238

Ein Vergleich der Bevölkerungszahlen aus dem Jahr 2001 mit jenen aus dem Jahr 2010 zeigt, dass die Region einen Bevölkerungszuwachs von rund 3 % erlebt hat. Somit handelt es sich bei der Region Strudengau um keine Abwanderungsregion. Es muss an dieser Stelle jedoch erwähnt werden, dass insgesamt 7 Gemeinden von den insgesamt 18 von einer Abwanderung betroffen sind, wobei dies bei St. Nikola am Stärksten der Fall ist. In dieser Gemeinde ging die Bevölkerungszahl von 2001 auf 2010 um rund 10 % zurück. Weiters von einer Abwanderung im betrachteten Zeitraum betroffen sind die Gemeinden Dimbach, Mitterkirchen, Saxen, Pabneukirchen, Grein und Waldhausen.

Die Region Strudengau setzt sich überwiegend aus ländlichen Gemeinden mit einer Einwohnerzahl von 1.000 bis 2.000 Einwohnern zusammen (insgesamt 9 Gemeinden). Vier Gemeinden der Region weisen sogar weniger als 1.000 Einwohner auf. Im Gegensatz dazu verfügen 3 Gemeinden über 2.000 bis 4.000 Einwohner und die Bezirkshauptstadt Perg hat sogar mehr als 7.700 Einwohner.

Ein Blick auf die Altersstruktur der Bevölkerung in der Region Strudengau zeigt, dass die Region einen kleinen Vorteil gegenüber dem restlichen Mühlviertel aufweist. Auffällig ist, dass die Bevölkerung in der Region Strudengau mit einem Anteil von knapp 25 % der 0 bis 19-Jährigen an der gesamten Bevölkerung etwas jünger ist, verglichen mit dem Bezirk Perg, dem Mühlviertel und

Oberösterreich. Dahingegen ist der Anteil der 40 bis 59-Jährigen und der 60 bis 79-Jährigen um 1 % niedriger als im Vergleich zum Bezirk oder zu Oberösterreich. Mit einem Anteil von 26 % ist jedoch der Anteil der 20 bis 39-Jährigen an der Bevölkerung durchaus vergleichbar zum Bezirk und zu Oberösterreich. Grundsätzlich erscheint sowohl die Bevölkerungsstruktur der LAG Strudengau, des Bezirks Perg und des Mühlviertels jünger als die oberösterreichische Bevölkerung. Abbildung 1-2 bis Abbildung 1-4 zeigen die Altersstruktur der Bevölkerung für die Region Strudengau, den Bezirk Perg und Oberösterreich. Die Altersstruktur des Mühlviertels wird nicht separat dargestellt, da sich diese mit der Struktur des Bezirks Perg deckt.

15%

25%

■ 0 bis 19 Jahre

■ 20 bis 39 Jahre

■ 40 bis 59 Jahre

■ 60 bis 79 Jahre

■ 80 Jahre und älter

Abbildung 1-2: Altersstruktur der Bevölkerung der Region Strudengau

Quelle: eigene Darstellung auf Basis der Regionaldatenbank des Landes OÖ

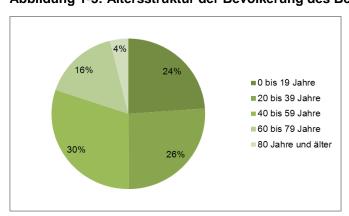
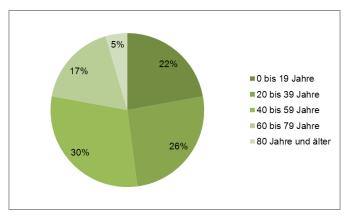



Abbildung 1-3: Altersstruktur der Bevölkerung des Bezirks Perg

Quelle: eigene Darstellung auf Basis der Regionaldatenbank des Landes OÖ

Abbildung 1-4: Altersstruktur der Bevölkerung Oberösterreichs

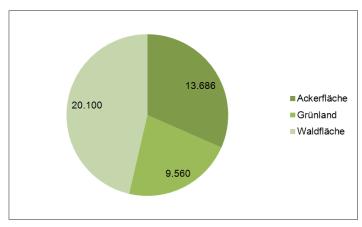
Eine relativ junge Bevölkerung in der Region Strudengau kann durchaus als Stärke der Region gesehen werden. Allerdings muss darauf hingewiesen werden, dass damit auch einige, nicht zu vernachlässigende, zukünftige Herausforderungen verbunden sein werden. Es müssen beispielsweise Arbeits- und Ausbildungsplätze in der Region geschaffen werden, um Jugendarbeitslosigkeit zu vermeiden bzw. eine Abwanderung der jungen Generation in die Zentren zu vermeiden. Es müssen Strukturen geschaffen werden, die diese Stärke der Region nicht zu einer Schwäche werden lassen.

1.3 Agrarstruktur in der Klima- und Energie-Modellregion Strudengau

Die Betrachtung der landwirtschaftlichen Nutzfläche unterteilt in Ackerland und Grünland sowie die in der Region vorhandenen Waldflächen geben einen ersten Hinweis auf mögliche verfügbare Nachwachsende Rohstoffe für die Energieerzeugung in der Region. In diesem Zusammenhang ist auch die Auflistung der Bracheflächen sinnvoll, denn diese könnten ebenfalls für den Anbau von Nachwachsenden Rohstoffen genutzt werden. Eine Gliederung der landwirtschaftlichen Betriebe in Haupterwerbs- und Nebenerwerbsbetriebe zeigt, welchen wirtschaftlichen Stellenwert die Landwirtschaft in der Region hat. Es muss erwähnt werden, dass sich die agrarischen Daten zu einem Großteil auf die Agrarstrukturerhebung 1999 beziehen und deshalb die aktuelle Situation nicht exakt abbilden. Neuere Daten sind allerdings auf Gemeindeebene nicht verfügbar. Tabelle 1-2 zeigt die landwirtschaftlichen Nutzflächen und Waldflächen in der Region Strudengau.

Tabelle 1-2: Landwirtschaftliche Nutzflächen und Waldflächen in der Region Strudengau

Gemeinden	landwirtschaftl. Nutzfläche [ha]	Ackerfläche [ha]	Grünland [ha]	Waldfläche [ha]
Allerheiligen	913	417	492	534
Arbing	741	505	233	168
Bad Kreuzen	2.421	1.024	1.391	1.111
Baumgartenberg	974	731	228	170


Dimbach	1.463	682	780	1.377
Grein	743	260	260	8.635
Klam	499	282	212	401
Mitterkirchen	1.571	1.341	219	287
Münzbach	1.580	718	859	752
Naarn	2.788	2.550	209	475
Pabneukirchen	2.135	1.004	1.129	1.342
Perg	1.738	1.363	366	845
Rechberg	659	228	430	486
Saxen	1.196	795	359	382
St. Nikola	353	162	186	589
St. Thomas	1.266	524	740	815
Waldhausen	1.617	644	954	1.289
Windhaag	973	456	513	442
Strudengau gesamt	23.630	13.686	9.560	20.100
Bezirk Perg	32.396	19.845	12.277	24.608
Mühlviertel	159.176	70.283	88.051	102.263
Oberösterreich	565.716	293.222	267.056	420.922
Anteil Strudengau am Bezirk Perg [%]	72,94%	68,96%	77,87%	81,68%
Anteil Strudengau am Mühlviertel [%]	14,85%	19,47%	10,86%	19,66%
Anteil Strudengau an Oberösterreich [%]	4,18%	4,67%	3,58%	4,78%

In der Region überwiegt das Ackerland mit einem Ausmaß von rund 58 % an der gesamten landwirtschaftlichen Nutzfläche. Grünland nimmt einen Anteil von rund 41 % ein. Ein kleiner Teil wird noch von den Forstflächen in Anspruch genommen. Das Ausmaß der Ackerflächen in der Region Strudengau ist im Vergleich zum Mühlviertel (ca. 44 %) höher, und auch im Vergleich zu gesamt Oberösterreich liegt der Anteil Ackerfläche höher. Rund 20 % der Ackerflächen des Mühlviertels befinden sich in der betrachteten Region. Im Gegensatz dazu befinden sich allerdings nur 11 % der Grünlandfläche des Mühlviertels in der Region.

Die drei Gemeinden Bad Kreuzen, Naarn und Pabneukirchen sind mit einer landwirtschaftlichen Nutzfläche von über 2.000 ha stark landwirtschaftlich geprägt. Naarn ist dabei vor allem ackerbaulich genutzt. Rund 92 % der landwirtschaftlichen Nutzfläche der Gemeinde setzt sich aus Ackerflächen zusammen. Acht Gemeinden in der Region weisen eine landwirtschaftliche Nutzfläche unter 1.000 ha auf. Sieben Gemeinden haben eine landwirtschaftliche Nutzfläche zwischen 1.000 und 2.000 ha.

Die Waldfläche in der Energieregion Strudengau beträgt 20.100 ha. Dies entspricht in etwa 20 % der gesamten Waldfläche des Mühlviertels bzw. sogar insgesamt 82 % der Waldfläche des Bezirks Perg.

Abbildung 1-5: Acker- und Grünlandflächen sowie Waldflächen in der Region Strudengau

Zur Veranschaulichung jener Agrarflächen, die derzeit keiner wirtschaftlichen Nutzung unterliegen, werden in Tabelle 1-3 die Brachflächen in der Region gegliedert nach Gemeinden dargestellt.

Tabelle 1-3: Bracheflächen in der Region Strudengau

Gemeinden	Anteil Brachefläche an Ackerfläche [%]	Brachfläche [ha]
Allerheiligen	2,00%	8,64
Arbing	2,20%	13,29
Bad Kreuzen	2,50%	25,60
Baumgartenberg	2,40%	17,54
Dimbach	2,20%	15,00
Grein	1,60%	4,16
Klam	1,60%	4,51
Mitterkirchen	1,80%	24,14
Münzbach	1,50%	10,77
Naarn	2,70%	68,85
Pabneukirchen	2,30%	23,09
Perg	4,00%	54,52
Rechberg	1,50%	3,42
Saxen	2,10%	16,70
St. Nikola	2,60%	4,21
St. Thomas	1,80%	9,43
Waldhausen	1,50%	9,66
Windhaag	2,00%	9,12
Region Strudengau	1,37%	322,66

Quelle: eigene Darstellung auf Basis von Statistik Austria 2010

Insgesamt befinden sich in der Region rund 323 ha an Brachflächen. Dies entspricht in etwa 1,4 % der gesamten landwirtschaftlichen Nutzfläche in der Region. In einem Großteil der Gemeinden im Strudengau beläuft sich der Bracheflächenanteil zwischen 1 % und 3 %. Lediglich in Perg ist der Anteil der Bracheflächen mit 4 % höher. Diese Bracheflächen könnten in weiterer Folge für den Anbau von Nachwachsenden Rohstoffen verwendet werden, wenn eine Nachfrage danach besteht.

Die agrarische Prägung der Region spiegelt sich auch in der Aufteilung der landwirtschaftlichen Betriebe wieder, wie sie auch in Tabelle 1-4 ersichtlich ist.

Tabelle 1-4: Landwirtschaftliche Betriebe in der Region Strudengau gegliedert in Haupt- und Nebenererbsbetriebe

				Anteil an gesamten landwirtschaftl. Betrieben [%]		
Gemeinden	landwirtschaftl. Betriebe	Haupterwerb	Nebenerwerb	Haupterwerb	Nebenerwerb	
Allerheiligen	102	43	59	42,16%	57,84%	
Arbing	66	25	41	37,88%	62,12%	
Bad Kreuzen	223	112	109	50,22%	48,88%	
Baumgartenberg	76	30	46	39,47%	60,53%	
Dimbach	144	73	71	50,69%	49,31%	
Grein	78	34	42	43,59%	53,85%	
Klam	36	18	18	50,00%	50,00%	
Mitterkirchen	120	59	60	49,17%	50,00%	
Münzbach	144	70	72	48,61%	50,00%	
Naarn	166	89	76	53,61%	45,78%	
Pabneukirchen	182	67	114	36,81%	62,64%	
Perg	118	48	66	40,68%	55,93%	
Rechberg	73	30	43	41,10%	58,90%	
Saxen	90	35	55	38,89%	61,11%	
St. Nikola	45	18	24	40,00%	53,33%	
St. Thomas	111	54	56	48,65%	50,45%	
Waldhausen	167	79	86	47,31%	51,50%	
Windhaag	85	48	36	56,47%	42,35%	
Region Strudengau	2.026	932	1.074	46,00%	53,01%	
Bezirk Perg	2.814	1.233	1.556	43,82%	55,29%	
Mühlviertel	13.716	5.566	7.991	40,58%	58,26%	
Oberösterreich	41.804	18.003	23.301	43,07%	55,74%	

Quelle: eigene Darstellung auf Basis der Regionaldatenbank der Regionaldatenbank des Landes OÖ

In der Region Strudengau werden von den insgesamt 2.026 landwirtschaftlichen Betrieben 46 % im Haupterwerb und 53 % im Nebenerwerb betrieben. Obwohl sich diese Statistik mit dem generellen Trend hin zu mehr Nebenerwerbsbetrieben deckt, so fällt doch auf, dass in der Region im Vergleich zum gesamten Mühlviertel mehr Haupterwerbsbetriebe existieren. Auch im Vergleich zu Oberösterreich werden im Strudengau mehr Haupterwerbslandwirtschaften betrieben.

46%

Haupterwerb

Nebenerwerb

Abbildung 1-6: Haupterwerbs- und Nebenerwerbsbetriebe in der Region Strudengau

Quelle: eigene Darstellung auf Basis der Regionaldatenbank des Landes OÖ

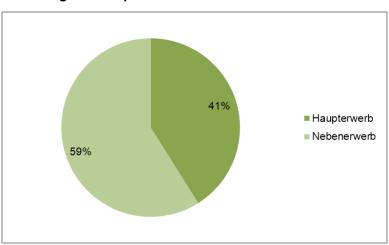


Abbildung 1-7: Haupt- und Nebenerwerbsbetriebe im Mühlviertel

Quelle: eigene Darstellung auf Basis der Regionaldatenbank des Landes OÖ

In der Region Strudengau befinden sich rund 76 % der Nebenerwerbs- und 69 % der Haupterwerbsbetriebe des Bezirks Perg sowie rund 17 % der Nebenerwerbs- und 13 % der Haupterwerbsbetriebe des gesamten Mühlviertels.

Im Vergleich mit dem restlichen Mühlviertel sind in der Klima- und Energie-Modellregion die Ackerflächen überproportional vertreten. Im Gegensatz dazu ist die Waldfläche eher gering und

auch das Grünland ist im Vergleich zum restlichen Mühlviertel unterproportional vertreten. Dies gibt bereits einen ersten Hinweis auf eine mögliche energetische Nutzung von Nachwachsenden Rohstoffen (NAWAROs). Da die Ackerfläche in der Energieregion Strudengau überwiegt, bietet sich beispielsweise die energetische Nutzung von Zwischenfrüchten an. Zudem sollte geklärt werden, ob nicht auch agrarische Reststoffe (z.B.: Stroh) für energetische Zwecke zur Verfügung stehen.

Weiters kann zur Klima- und Energie-Modellregion Strudengau angemerkt werden, dass im Vergleich zum restlichen Mühlviertel und auch im Vergleich zu gesamt Oberösterreich ein höherer Anteil der Landwirte im Haupterwerb tätig ist. Somit ist die Landwirtschaft noch ein relativ wichtiger Wirtschaftsfaktor in der Region. Dies stellt mitunter eine Stärke der Region dar, die es zu bewahren gilt.

1.4 Wirtschaftliche Strukturen in der Klima- und Energie-Modellregion Strudengau

Durch die Erhebung der wirtschaftlichen Strukturen innerhalb einer Region zeigt sich, welche Sektoren in der Region am stärksten vertreten sind und wo sich bei Etablierung der Klima- und Energie-Modellregion Synergien mit der regionalen Wirtschaft ergeben können. Zudem kann so ausgelotet werden, wo verstärkt regionales Know-How vorhanden ist, das für Umsetzungsprojekte genutzt werden kann.

1.4.1 Struktur der Arbeitsstätten

Mittels der Erhebung der Arbeitsstättenstruktur wird ermittelt, welche Branchen in der Region besonders stark vertreten sind und ob diese möglicherweise bei der Umsetzung der im Umsetzungskonzept vorgeschlagenen Maßnahmen verstärkt eingebunden werden sollen. Ein derartiges Vorgehen bietet sich insbesondere dann an, wenn von den Kompetenzen der Unternehmen bei der Maßnahmenumsetzung profitiert werden kann. Tabelle 1-5 zeigt die Struktur der Arbeitsstätten in der Region Strudengau.

Tabelle 1-5: Arbeitsstätten in der Region Strudengau gegliedert nach ÖNACE 1995

	Arbeitsstätten					
ÖNACE 1995	Insg.	0-4 Beschäftigte	5-19 Beschäftigte	20-99 Beschäftigte	100-199 Beschäftigte	200 und mehr
Insgesamt	1.286	853	344	76	7	6
C Bergbau und Gewinnung von Steinen und Erden	9	24	3	1	0	0
D Sachgütererzeugung	132	68	45	11	3	5
E Energie- und Wasserversorgung	16	12	3	1	0	0
F Bauwesen	101	49	33	15	3	1
G Handel; Reparatur v. Kfz u. Gebrauchsgütern	307	225	68	14	0	0
H Beherbergungs- u. Gaststättenwesen	153	130	23	0	0	0

I Verkehr und Nachrichtenübermittlung	78	40	32	6	0	0
J Kredit und Versicherungswesen	73	48	24	1	0	0
K Realitätenwesen, Unternehmensdienstleistung	117	92	23	2	0	0
L Öffentl. Verwaltung, Sozialversicherung	41	11	24	5	1	0
M Unterrichtswesen	74	26	32	16	0	0
N Gesundheits-, Veterinär- u. Sozialwesen	91	73	16	2	0	0
O Erbringung v. sonst. öffentl. Dienstleistungen	94	74	18	2	0	0

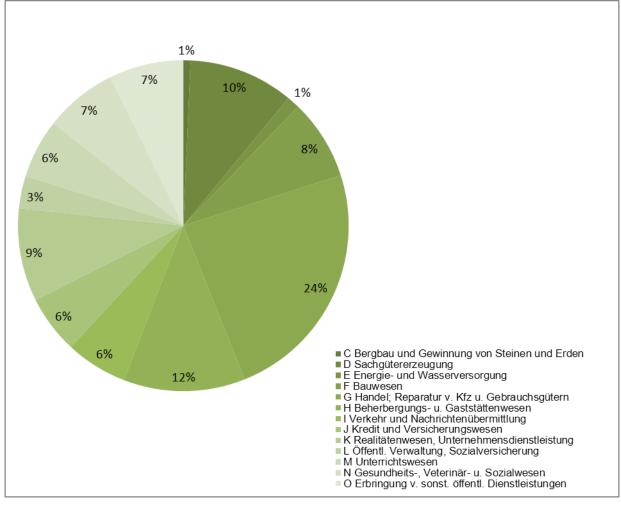
Quelle: eigene Darstellung auf Basis Statistik Austria 2001

1.4.2 Tourismusdaten

Der Wirtschaftszweig des Tourismus in einer Region lässt sich am Geeignetsten über die Nächtigungszahlen erfassen. Für die Region Strudengau wurden dazu die Nächtigungszahlen 2006 bis 2010 erfasst. Tabelle 1-6 zeigt die Nächtigungszahlen für die Region Strudengau im Vergleich.

Tabelle 1-6: Nächtigungszahlen in der Region Strudengau im Vergleich

Gemeinden	2006/2007	2007/2008	2008/2009	2009/2010
Allerheiligen	o.A.	o.A	o.A	o.A
Arbing	o.A	o.A	o.A	o.A
Bad Kreuzen	33.775	41.974	45.249	43.611
Baumgartenberg	o.A	o.A	o.A	o.A
Dimbach	o.A	o.A	o.A	o.A
Grein	29.479	31.509	30.752	28.006
Klam	o.A	o.A	o.A	o.A
Mitterkirchen	5.255	5.338	5.193	6.345
Münzbach	o.A	o.A	o.A	o.A
Naarn	9.599	9.155	9.622	11.782
Pabneukirchen	2.605	2.313	2.923	2.629
Perg	11.394	18.242	16.627	14.944
Rechberg	9.993	8.360	11.558	11.620
Saxen	o.A	o.A	o.A	o.A
St. Nikola	1.332	1.618	2.548	1.882
St. Thomas	2.837	1.635	1.609	897
Waldhausen	5.958	6.799	6.158	7.649
Windhaag	o.A	o.A	o.A	o.A
Region Strudengau	112.227	126.943	132.239	129.365
Bezirk Perg	129.481	142.946	148.187	145.465
Mühlviertel	k.A.	k.A.	972.978	k.A.
Oberösterreich	6.686.663	6.899.494	6.884.592	6.717.621


Quelle: eigene Darstellung auf Basis der Regionaldatenbank des Landes OÖ

In der Region wurden 2009/2010 insgesamt 129.365 Nächtigungen verzeichnet. Davon entfielen knapp 34 % auf die Gemeinde Bad Kreuzen und rund 22 % auf die Gemeinde Grein. Somit sind diese beiden Gemeinden die tourismusstärksten Orte in der Region Strudengau. Grundsätzlich konzentriert sich der Tourismus auf 10 von insgesamt 18 Gemeinden. Die Nächtigungen in der Region Strudengau haben an der Gesamtnächtigungszahl des Bezirks Perg einen Anteil von rund 89 % und an der Nächtigungszahl Oberösterreichs einen Anteil von knapp 2 %. Da die Nächtigungszahlen für das gesamte Mühlviertel nur für das Jahr 2008/2009 verfügbar sind, ist auch ein Vergleich mit der Region nur für dieses Jahr möglich. In diesem Jahr hatte die Region Strudengau einen Anteil von rund 14 % an den gesamten Nächtigungen im Mühlviertel. Im Gegensatz zu den Jahren davor ist von 2008/2009 auf 2009/2010 ein Rückgang der Nächtigungen zu verzeichnen.

Insgesamt existieren in der Region 1.286 Unternehmen, von denen die Mehrzahl 0 bis 4 Beschäftigte oder 5 bis 19 Beschäftigte hat. Folglich handelt es sich bei den im Strudengau vorhandenen Unternehmen zu einem Großteil um Kleinbetriebe. Wie Abbildung 1-8 zeigt, sind 24 % der Unternehmen, und damit die Mehrheit, in der Branche "Handel, Reparatur von Kfz und Gebrauchsgütern" tätig. 12 % der Unternehmen gehören dem Beherbergungs- und Gaststättenwesen und 10 % in der Sachgütererzeugung an. Die eben genannten Branchen bilden somit die Schwerpunkte der Wirtschaftslandschaft in der Region.

Da das vorliegende Umsetzungskonzept vor allem auf die energetische Sanierung von Gebäuden abzielt, könnten vor allem die Unternehmen der Baubranche eine wesentliche Rolle spielen. Insgesamt befinden sich in der Region 101 Betriebe, die im Bauwesen tätig sind. Dies sind 8 % der gesamten Unternehmen im Strudengau. Davon haben drei Betriebe zwischen 100 und 199 Personen beschäftigt. Ein Betrieb verfügt sogar über mehr als 200 Beschäftigte. Folglich existiert hier Potential für die Zusammenarbeit zwischen der Baubranche und den Entscheidungsträgern in der Region. wenn um die konkrete Umsetzung von energetischen Gebäudesanierungsmaßnahmen geht.

Abbildung 1-8: Struktur der Arbeitsstätten in der Region Strudengau

Quelle: eigene Darstellung auf Basis von Statistik Austria 2001

In Abbildung 1-9 wird die Struktur der Unternehmen nach Anzahl der Beschäftigten deutlich. Demnach weisen 66 % der Unternehmen 0 bis 4 Beschäftigte auf. Lediglich 1 % der Unternehmen verfügt über 100 bis 199 Beschäftigte. Hier wird die Kleinstrukturiertheit der Unternehmen in der Region deutlich.

1% 0%
6%

■ 0-4 Beschäftigte

■ 5-19 Beschäftigte

■ 20-99 Beschäftigte

■ 100-199
Beschäftigte

■ 200 und mehr

Abbildung 1-9: Anzahl der Beschäftigten der Unternehmen in der Region Strudengau

Quelle: eigene Darstellung auf Basis von Statistik Austria (2001)

Die Struktur der Unternehmen in der Region Strudengau, betrachtet nach der Anzahl der Beschäftigten, deckt sich gut mit der für Oberösterreich und den Bezirk Perg erhobenen Struktur. Sowohl im Bezirk Perg als auch in Oberösterreich verfügen 68 % der Unternehmen über 0 bis 4 Beschäftigte. Die Anzahl der Unternehmen mit 200 und mehr Beschäftigten ist im Verhältnis zur Gesamtanzahl der Unternehmen auch im Bezirk und in Oberösterreich gering.

In der Region Strudengau befinden sich rund 59 % der gesamten im Bezirk Perg angesiedelten Arbeitsstätten und rund 2 % der oberösterreichischen Arbeitsstätten. Weiters zeigt Tabelle 1-7, dass sich in der Region die Mehrzahl der Unternehmen mit 100 und mehr Beschäftigten des Bezirks Perg befindet.

Tabelle 1-7: Vergleich der Unternehmen und Beschäftigten der Region Strudengau mit dem Bezirk Perg und gesamt Oberösterreich

	Arbeitsstätten insgesamt					
ÖNACE 1995	Insg.	0-4 Beschäftigte	5-19 Beschäftigte	20-99 Beschäftigte	100-199 Beschäftigte	200 und mehr
Region Strudengau	1.286	853	344	76	7	6
Bezirk Perg	2.184	1.483	550	134	8	9
Oberösterreich	57.657	39.153	13.700	4.066	448	290
Anteil Region am Bezirk [%]	58,88	57,52	62,55	56,72	87,50	66,67
Anteil Region an Oberösterreich [%]	2,23	2,18	2,51	1,87	1,56	2,07

Quelle: eigene Darstellung auf Basis von Statistik Austria (2001)

Rund 58 % der Beschäftigten im gesamten Bezirk Perg sind in einem Unternehmen in der Region Strudengau tätig und rund 1,9 % der in Oberösterreich beschäftigten Personen arbeiten im Strudengau. Die Statistik zur Struktur der Beschäftigten zeigt auch, dass in der Region rund 91 % der ArbeitnehmerInnen unselbstständig beschäftigt sind. Dies deckt sich auch mit dem Bezirk Perg selbst. Auf Oberösterreichebene betrachtet fällt auf, dass die Rate der unselbstständig Beschäftigten mit rund 92 % etwas höher ist, als in der Region.

1.5 Energetische Strukturen in der Klima- und Energie-Modellregion Strudengau

Im nachfolgenden Kapitel wird die bereits vorhandene energetische Infrastruktur in der Region Strudengau beleuchtet. Besonderes Augenmerk wird dabei auf die vorhandenen Anlagen zur Erzeugung erneuerbarer Energie gelegt. Weiters werden auch, soweit vorhanden, die Kapazitäten und Erzeugungsmengen dieser Anlagen präsentiert.

Tabelle 1-8: Biomasse-Nahwärmeanlagen in der Region Strudengau

	Biomasse-Nahwärmeanlagen					
Gemeinden	Leistung [kW]	Erzeugte Wärme [kWh/a]	Hackgut [Srm]			
Allerheiligen	220	396.000	660			
Arbing	300	540.000	900			
Bad Kreuzen	1.800	3.240.000	5.400			
Dimbach	750	1.350.000	2.250			
Grein	2.500	4.500.000	7.500			
Münzbach	350	630.000	1.050			
Pabneukirchen	500	900.000	1.500			
Perg	8.000	14.400.000	24.000			
Rechberg	665	1.197.000	1.995			
Saxen	500	900.000	1.500			
St. Thomas	160	288000	480			
Waldhausen	750	1.350.000	2.250			
Windhaag	800	1.440.000	2.400			
Summe	11.725	21.105.000	35.175			

Quelle: eigene Darstellung auf Basis MÜRP

Insgesamt ist in der Region Strudengau eine Leistung an Biomassenahwärmeanlagen von rund 12.000 kW installiert. Diese 13 Biomasse-Nahwärmeanlagen produzieren rund 21 Mio. kWh Wärme pro Jahr und verbrauchen ca. 35.000 Srm Hackgut (siehe Tabelle 1-8).

Tabelle 1-9: Biogasanlagen in der Region Strudengau

Ort	Anlage	Leistung kW	Über- nommene Rohstoffe	Biogas- produktion in m3/a	Strom- produktion kWh/a	Wärme- produktion kWh/a
Münzbach	Agrarenergie Münzbach GmbH	250	NAWARO	581.000	2.150.000	2.494.000
Saxen	Big Pro Eizenau Biogasgemeinschafts- projekt GmbH	250	NAWARO	581.000	2.150.000	2.494.000

Quelle: eigene Darstellung auf Basis MÜRP

Nachfolgend wird die installierte Leistung an Photovoltaikanlagen in der Region Strudengau gezeigt.

Tabelle 1-10: Installierte Photovoltaikleistung in der Region Strudengau

	Watt pro Einwohner	PV Anlagenleistung [W]
Allerheiligen	0	0
Arbing	42,9	58.770
Bad Kreuzen	0	0
Baumgartenberg	17,14	23.990
Dimbach	0	0
Grein	8,84	27.470
Klam	21,39	16.880
Mitterkirchen	37,94	68.300
Münzbach	5,46	9.430
Naarn	0	0
Pabneukirchen	8,61	14.810
Perg	7,65	54.570
Rechberg	0	0
Saxen	16,66	29.650
St. Nikola	0	0
St. Thomas	0	0
Waldhausen	8,81	25.710
Windhaag	0	0
Region Strudengau	9,13	329.580
Bezirk Perg	7,64	488.440
Oberösterreich	7,33	10.357.880

Quelle: eigene Darstellung auf Basis von www.solarbundesliga.at

Tabelle 1-10 zeigt, dass in der Region Strudengau mit rund 9 W installierter PV-Leistung im Vergleich zum Bezirk Perg und auch im Vergleich zu gesamt Oberösterreich überproportional viel

PV-Leistung pro Einwohner in der Energieregion Strudengau installiert ist. Insgesamt beläuft sich die installierte PV-Leistung auf 329.580 Watt.

In Münzbach und Saxen existiert jeweils auch bereits eine Biogasanlage à 250 kW Leistung. Das Biogas wird mittels der Vergärung von NAWAROs erzeugt und in einem KWK-Prozess eingesetzt.

Kompostieranlagen können insofern auch als Teil der energetischen Strukturen einer Region bezeichnet werden, sofern sie Rohstoffe verarbeiten, die gegebenenfalls auch in einer Biogasanlage vergoren werden können. Um konkrete Aussagen diesbezüglich machen zu können, müssen allerdings die verarbeiteten Rohstoffe im Detail bekannt sein. Tabelle 1-11 zeigt die in der Region Strudengau vorhandenen Kompostieranlagen.

Tabelle 1-11: Kompostieranlagen und verarbeitete Menge in der Region Strudengau

Ort	verarbeitete Menge 2007 [m³]	bewilligte Anlagenkapazität 2007 [m³]
Arbing	683	300
Bad Kreuzen	k.A.	300
Grein	3.941	2.000
Münzbach	153	300
Perg	7.172	7.000
Rechberg	130	300
Saxen	554	1.000
Windhaag	285	300

Quelle: eigene Darstellung auf Basis MÜRP

Neben Kompostieranlagen stellen auch Kläranlagen in einer Region einen wesentlichen Bestandteil der Infrastruktur dar. Zum einen sind Kläranlagen wesentliche kommunale Energieverbraucher, aber das produzierte Klärgas kann zum anderen auch für eine Verstromung genutzt werden. Aus diesem Grund müssen Kläranlagen in einer regionalen Strukturanalyse mitberücksichtigt werden.

Tabelle 1-12: Kläranlagen in der Region Strudengau

Bezirk	Gemeinden	Kläranlage	Kapazität [EW60]	Zulaufmenge [m³/d]
PE	Allerheiligen	Verbandmitglied der Anlage RHV Kettenbach I mit Standort Tragwein		
		Verbandmitglied der Anlage RHV Kettenbach II mit Standort Mistelberg		
PE	Arbing	Verbandsmitglied bei RHV Machland-Ost		
PE	Bad Kreuzen	Bad Kreuzen	3.000	433
PE	Baumgartenberg	Verbandsmitglied bei RHV Machland-Ost		
PE	Dimbach	Dimbach	550	119
PE	Grein	Grein	7.850	819
PE	Klam	Klam	1.400	141

PE	Mitterkirchen	Mitterkirchen	1.250	367
PE	Münzbach	Verbandsmitglied bei RHV Perg-Münzbach-Windhaag-Rechberg		
PE	Naarn	Verbandsmitglied der Anlage RHV Gerichtsbezirk Mauthausen-Ost mit Standort Mauthausen		
PE	Pabneukirchen	Pabneukirchen	4.000	434
PE	Perg	RHV Perg- Münzbach- Windhaag-Rechberg	25.000	3.587
PE	Rechberg	Verbandsmitglied bei RHV Perg-Münzbach-Windhaag-Rechberg		
PE	Saxen	RHV Machland-Ost	12.700	1359
PE	St. Nikola	Verbandsmitglied der Anlage Grein		
PE	St. Thomas	Verbandsmitglied der Anlage RHV Pierbach-Schönau-St. Thomas mit Standort Pierbach		
PE	Waldhausen	Waldhausen	3.750	1.319
PE	Windhaag	Verbandsmitglied bei RHV Perg-Münzbach-Windhaag-Rechberg		

Quelle: eigene Darstellung auf Basis von Land OÖ

1.6 Ergebnisse und Rückschlüsse aus der EGEM-Erhebung in der Region Strudengau

In den Gemeinden der Energieregion Strudengau wurde ab Beginn des Jahres 2007 eine EGEM-Erhebung begonnen, die Ende 2007 abgeschlossen wurde. Daraufhin fand die Auswertung der Ergebnisse statt. Im Jahr 2009 wurde der Projektbericht erstellt. Dieser enthält die Auswertung der Ergebnisse der insgesamt 1.500 Fragebögen. Die Auswertung stellt die Primärerhebung dar. In einer Sekundärerhebung wurden Hochrechnungen auf Basis von Statistiken und Erfahrungswerten der Ergebnisse aus der Primärerhebung durchgeführt. Die EGEM-Erhebung umfasst Haushalte, landwirtschaftliche Betriebe, öffentliche Einrichtungen und Gewerbebetriebe. Erhoben wurden Gebäudestrukturen, Haustechnikstruktur, Mobilität und Energiebedarf der Gebäudenutzer sowie öffentlicher Energiebedarf und der Energiebedarf in Gewerbe und Industrie. Im nachfolgenden Abschnitt des Umsetzungskonzeptes werden die wesentlichen Ergebnisse aus der EGEM-Erhebung beschrieben, wobei auf die erhobene Gebäudestruktur nicht mehr eingegangen wird, da sich umfangreiche Ausführungen dazu in Kapitel 2 finden.

1.6.1 Heizanlagen in der Region Strudengau

Der Fokus des vorliegenden Umsetzungskonzepts liegt auf der Sanierung von Wohngebäuden und öffentlichen Gebäuden. In diesem Bereich spielt auch die Erneuerung von Heizanlagen eine Rolle. Im Zuge der Sanierung kann sich eine Heizungserneuerung als sinnvoll und rentabel herausstellen. Eventuell kann dadurch auch der Nutzen einer thermischen Sanierung für den Gebäudeeigentümer gesteigert werden. Aus diesem Grund können die nachfolgend beschriebenen Daten aus der EGEM-Erhebung in der Energieregion Strudengau durchaus auch für die Entwicklung weiterer Umsetzungsmaßnahmen von Bedeutung sein (Lettner et al., 2009)

Nach der Hochrechnung der Primärerhebung zeigte sich, dass ein Großteil der Heizanlagen in der Energieregion Strudengau mit Heizöl extra leicht betrieben wird. Insgesamt laufen 36 % der Heizanlagen mit Heizöl extra leicht. Weitere 31 % der Heizanlagen heizen mit Scheitholz. Der große Anteil der Scheitholzheizungen in der Region spiegelt die überwiegend ländlichen Strukturen in der Energieregion wieder. Insgesamt werden in der Region 52 % der Heizanlagen mit fossilen Brennstoffen betrieben. Rund 48 % arbeiten mit erneuerbaren Energieträgern. Das Verhältnis erscheint somit relativ ausgeglichen (Lettner et al., 2009). Allerdings muss an dieser Stelle erwähnt werden, dass gerade im Bereich der mit Heizöl extra leicht betriebenen Anlagen ein Potential für den Umstieg auf erneuerbare Energieträger, zum Beispiel Pellets, gegeben ist. Dieses Potential ergibt sich vor allem dadurch, dass der Großteil der in der Region betriebenen Heizungsanlagen mit diesem fossilen Brennstoff betrieben wird. Das Umstellungspotential muss um jene Anlagen verringert werden, die nach 1998 errichtet wurden, denn ab diesem Zeitpunkt gelten diese laut der EGEM-Erhebung als neu (Lettner et al., 2009). Die ältesten Anlagen sind heute 13 Jahre alt. In dieser Kategorie befinden sich ungefähr 24 % aller in der Region vorhandenen Heizölheizanlagen. Für eine mögliche Realisierung kommen vor allem die Altanlagen, also jene, die vor 1988 errichtet wurden, und Bestandsanlagen, die vor 1998 errichtet wurden, in Fragen.

1.6.2 Endenergiebedarf in der Energieregion Strudengau für Raumheizung und Warmwasser

Die EGEM-Erhebung ergab, dass in der Region Strudengau rund 400.000 MWh Endenergie für Raumheizung und Warmwasser benötigt werden. Davon entfallen 37 % auf landwirtschaftliche Gebäude, 30 % auf Einfamilienhäuser, 19 % auf Nichtwohngebäude und 15 % auf Mehrfamilienhäuser. Auffällig ist auch, dass Gebäude, die älter als 30 Jahre sind, 70 % des Energieverbrauchs ausmachen obwohl diese an der gesamten Gebäudestruktur nur einen Anteil von 60 % haben. Dies zeigt, welch große Relevanz eine thermische Sanierung dieser Gebäude für die Senkung des Energieverbrauchs in der Region hat. Besonders auffällig hoch ist der Energieverbrauch von Einfamilienhäusern der Bauperiode 1960 bis 1989. Die EGEM-Erhebung zeigt auch, dass landwirtschaftliche Gebäude die bis 1944 errichtet wurden rund 1/5 des Endenergiebedarfs in Region verbrauchen. Folglich kann auch durch eine Sanierungsoffensive bei diesen Gebäuden eine Verminderung des Endenergieverbrauchs erzielt werden.

Insgesamt wurde für die Energieregion Strudengau ein Endenergiebedarf von rund 620.000 MWh erhoben. Davon werden 57 % für Raumheizung, 8 % für Warmwasser, 6 % für Haushaltsstrom und 29 % für Mobilität verbraucht. Einen weiteren Ansatzpunkt für die Verbesserung der Energiesituation in der Energieregion Strudengau liefert ein Blick auf den derzeitigen Anteil von Solarenergie an der Warmwasserbereitstellung und Heizung. Warmwasser wird in der Region derzeit zu 1 % aus Solarenergie bereitgestellt. Etwa 0,4 % der Heizenergie werden aus Solarenergie Sonnenenergie bezogen. Eine Forcierung des Einsatzes von zur Warmwasserbereitstellung und Heizungsunterstützung würde sich im Zuge der Forcierung der thermischen Sanierung anbieten.

1.6.3 Endenergiebedarf in der Energieregion Strudengau für Mobilität

Zurzeit werden in der Energieregion Strudengau 180.000 MWh Endenergie pro Jahr in der Energieregion Strudengau für Mobilität aufgewendet. Pro Jahr legt jeder Einwohner der Region

durchschnittlich 7.060 km zurück. Hier ist der gewerbliche Verkehr nicht miteingeschlossen. Ungefähr die Hälfte dieser Strecke entfällt auf dem Pendlerverkehr. In manchen Gemeinden der Energieregion Strudengau liegt der Pendleranteil sogar bei rund 60 %, wobei der relativ hohe Pendleranteil aus der Wirtschaftsstruktur in der Region Strudengau resultiert.

1.6.4 Strombedarf für öffentliche Zwecke und Endenergieverbrauch in Industrie und Gewerbe

Der öffentliche Strombedarf setzt sich im Wesentlichen aus dem Elektrizitätsbedarf von Pumpwerken, Schwimmbädern und der Straßenbeleuchtung zusammen. Derzeit werden in der Energieregion Strudengau etwa 2.300 MWh Strom für öffentliche Zwecke pro Jahr verbraucht. Pro Einwohner ergibt sich jährlich ein Stromverbrauch in Höhe von 80 kWhel.

Im Sektor Industrie und Gewerbe werden pro Jahr circa 130.000 MWh verbraucht. Der Endenergiebedarf wurde auf Basis der Beschäftigungszahlen in der EGEM-Erhebung errechnet.

1.6.5 Schlussfolgerungen aus der EGEM-Erhebung für die Region Strudengau

Die Endenergieverteilung aller Nutzergruppen zeigt, dass Raumwärme mit einem Anteil von 48 % den höchsten Anteil am Endenergieverbrauch hat. Diese Tatsache zeigt auch, dass sich in diesem Bereich große Einsparungspotentiale ergeben. Insgesamt machen Raumheizung Warmwasser rund 54 % des gesamten Endenergieverbrauchs aus. Der zweitgrößte Endenergieverbraucher in der Energieregion Strudengau ist der Verkehr. Wenn alle Energieverbrauchergruppen zusammengenommen werden, so wird ersichtlich, dass 62 % Endenergie aus fossilen Energieträgern und 38 % aus erneuerbaren Energieträgern bereitgestellt werden. Der größte Anteil davon entfällt auf Treibstoffe, Heizöl und Scheitholz. Es muss festgehalten werden, dass eine Senkung des Endenergieverbrauchs in der Energieregion Strudengau zukünftig auch mit einer verstärkten Nutzung von erneuerbaren Energieträgern einhergehen muss. Der durchschnittliche Endenergiebedarf pro Einwohner und Jahr beträgt in der Energieregion 26 MWh. Neben jenen drei Gemeinden in der Region, die stärker über dem Durchschnitt liegen, weichen die übrigen nur unwesentlich von diesem Durchschnitt ab. Der Endenergieverbrauch pro Einwohner hängt wesentlich von den Strukturen in den Gemeinden ab. Genauso schwankt der Anteil an erneuerbaren Energien in den einzelnen Gemeinden der Energieregion Strudengau zwischen 28 % und 59 %. Es kann angenommen werden, dass auch diese Bandbreite mit unterschiedlichen Strukturen in den Gemeinden zusammenhängt.

2 Thermische Gebäudesanierung als wesentliche Maßnahme zur Realisierung von Energieeinsparungspotentialen in der Klima- und Energie-Modellregion Strudengau

Die Gemeinden der Energieregion Strudengau haben sich zum Ziel gesetzt, eine Klima- und Energie-Modellregion im Bereich Sanierung zu werden. Aus diesem Grund wird im Projekt "Enerieoptimierung Strudengau" der Themenbereich "Sanierung" als Schwerpunkt behandelt. Im Folgenden werden zunächst allgemeine Informationen und theoretische Hintergründe rund um den Themenbereich "Sanierung" dargestellt. Im Anschluss daran wird das Sanierungspotential der Energieregion Strudengau berechnet, um im weiteren Projektverlauf ein Konzept zur Umsetzung zu entwickeln. Diese Umsetzungsstrategie soll für die Klima- und Energie-Modellregion als Leitfaden dienen, um eine Klima- und Energie-Modellregion zu werden.

Wie eingehend erwähnt, werden zunächst die allgemeinen Informationen und theoretischen Hintergründe behandelt. Auf derzeitig laufende Förderungen wird besonders detailiert eingegangen. Zur Ermittlung des Heizwärmeverbrauchs ist der Energieausweis unabdingbar. Energetische Schwachstellen werden während der Eingabe erkennbar und Änderungen können in den Energieausweiserstellungsprogrammen schnell simuliert werden. Folglich wird aufgrund der Wichtigkeit in den nächsten Kapiteln darauf eingegangen. In den theoretischen Ausführungen wird auch die Entwicklung des Ölpreises in Hinblick auf die Energiepreissteigerung näher beleuchtet.

Das Projekt "Energiezukunft 2030", in dem Sanierung einen wesentlichen Inhaltspunkt darstellt, wurde durch das Land Oberösterreich gestartet. Die Möglichkeiten dazu wurden in der Studie "Volkswirtschaftliche Analyse des Maßnahmenprogramms "Energiezukunft 2030 der Oberösterreichischen Landesregierung" aufgelistet und in diesem Bericht zusammengefasst wiedergegeben.

Durch ein Online-Berechnungsprogramm auf der Internetplattform Energy Globe besteht die Möglichkeit für Private sowie auch für Unternehmer und Gemeinden, Gebäude energetisch grob zu bewerten. In diesem Bericht wird ein Überblick über die einzelnen Berechnungstools gegeben.

Anschließend an theoretische Grundlagen wird im nächsten Schritt der zu sanierende Gebäudebestand ermittelt. In der energetischen Sanierung von Wohngebäuden liegt ein beträchtliches Energieeinsparungspotential. Um festzustellen, wie hoch der Anteil an zu sanierenden Gebäuden ist, wird zunächst der Gebäudebestand erhoben und die Altersstruktur analysiert. Durch die Berechnung der Sanierungsrate kann das mögliche Sanierungspotential berechnet werden, welches die Grundlage für weitere Maßnahmen bildet.

Ziel ist es, einen Masterplan zur Sanierung von Gebäuden zu erstellen, anhand dessen durch möglichst geringen, auch finanziellen Aufwand hohe energetische Einsparungen im Bereich Heizenergie erwirkt werden können. Durch die Spezialisierung im Bereich Sanierung soll die Klima- und Energie-Modellregion Strudengau als Klima- und Energie-Modellregion etabliert werden, um als Modell für andere Regionen zum Thema Sanierung dienen zu können.

22

2.1 Allgemeine Informationen und theoretische Grundlagen

Dieser Teilbereich des vorliegenden Berichtes befasst sich mit den allgemeinen Informationen rund um das Thema Sanierung sowie dazugehörige theoretische Grundlagen. Zu Beginn werden die derzeitigen in Oberösterreich laufenden Förderungen detailiert beschrieben. Im Anschluss wird die Energiepreisentwicklung im Zusammenhang mit dem Ölpreis beleuchtet.

Anschließend werden Auszüge betreffend Sanierung aus der Studie "Volkswirtschaftliche Analyse des Maßnahmenprogramms "Energiezukunft 2030 der Oberösterreichischen Landesregierung" zusammengefasst dargestellt.

Da der Energieausweis eine Grundlage zur Gebäudebewertung darstellt wird in einem nächsten Schritt näher darauf eingegangen und auf Berechnungsschritte sowie auch auf rechtliche Grundlagen eingegangen.

2.1.1 Förderungen des Landes OÖ – Wohnbauförderung

In diesem Kapitel wird ein Überblick über die aktuellen Wohnhaussanierungsförderungen des Landes Oberösterreich gegeben. Es wird detailierter auf diese Förderungen eingegangen als in den nachfolgenden Kapiteln, da sie zum einen Grundlagen in den Berechnungen zu den Sanierungskosten von Ein- und Zweifamilienhäusern in Oberösterreich sind und zum anderen besonders für das berechnete Sanierungspotential von ca. 2.900 Gebäuden in der Region Strudengau in Frage kommen. Für diese Darstellung werden die Informationen der OÖ Landesregierung¹ verwendet und teils wörtlich übernommen. Es werden in Oberösterreich die Sanierung von Miet- und Eigentumswohnungen, von Häusern bis zu 3 Wohnungen und Wohnhäuser mit mehr als 3 Wohnungen, sowie von Wohnheimen gefördert. Zusätzlich gibt es eine Förderung für den Anschluss an ein Fernwärmenetz und die Vorsorge und Sanierung bei Radonbelastung.

2.1.1.1 Sanierung von Miet- und Eigentumswohnungen²

Die Sanierung von Miet- und Eigentumswohnungen wird durch Annuitätenzuschüsse oder durch einmalige nicht rückzahlbare Zuschüsse gefördert. Fördernehmer können sowohl WohnungseigentümerInnen, als auch MieterInnen sein. Für die Inanspruchnahme sind Einkommensgrenzen einzuhalten, die sich je nach der im Haushalt lebenden Personenanzahl erhöhen. Folgendes wird gefördert:

- Errichtung einer Anlage zur Beheizung oder die Erneuerung eines Heizkessels (gilt nur für Brennwertgeräte für fossile Brennstoffe)
- Tausch der Fenster oder des Fensterglases (Pr

 üfzeugnis des Herstellers ist erforderlich)
- Tausch von Wohnungseingangstüren
- Fernwärmeanschluss

¹ Vgl. Land OÖ (2011a)

² Vgl. Land OÖ (2011a)

 Umstellung des Warmwasseranschlusses auf einen bereits bestehenden Fernwärmeanschluss

Die Höhe des Darlehens, bis zu der Annuitätenzuschüsse gewährt werden, beträgt für Sanierungsmaßnahmen innerhalb einer Wohnung höchstens 7.500 Euro. Die Zuschüsse sind im Ausmaß von 25% zu einem Darlehen eines Geldinstitutes mit 15 Jahren Laufzeit, bei denen die Verzinsung des bezuschussten Darlehens höchstens 0,25 Prozentpunkte über der Sekundärmakrtrendite "Emittenten Gesamt" (SMR) liegen darf. Zusätzlich kann ein Annuitätenzuschuss von 25% zu einem Darlehen von max. 2.000 Euro pro Wohnung für den Fernwärmeanschluss ohne finanzielle Beteiligung des Energieversorgungsunternehmens in Anspruch genommen werden. Für Fernwärmeanschlüsse mit finanzieller Beteiligung des Energieversorgungsunternehmens kann ein Annuitätenzuschluss gewährt werden.

Für die Gewährung des Darlehens müssen folgende Voraussetzungen erfüllt werden:

- Der Eigentümer bzw. die Eigentümerin oder Mieter bzw. Mieterin müssen die Wohnung als Hauptwohnsitz nutzen.
- Bei der Sanierung einzelner Außenteile sind die energetischen Mindeststandards von ≤ 1,2 W/m²K für Fenster bzw. Türentaus und ≤ 1,1 W/m²K für den Tausch des Fensterglases einzuhalten.
- Zum Zeitpunkt des Sanierungsansuchens muss die Erteilung der Baubewilligung für das zu sanierende Objekt mindestens 20 Jahre zurückliegen. Der Zeitpunkt der Erteilug der Baubewilligung ist bei Anschluss an das Fernwärmenetz nicht maßgeblich.

2.1.1.2 Sanierung von Häusern bis zu 3 Wohnungen³

Diese Förderung kann von EigentümerInnen von Häusern bis zu drei Wohnungen in Anspruch genommen werden. Auch hier muss die Erteilung der Baubewilligung des Gebäudes zum Einreichzeitpunkt des Ansuchens mindestens 20 Jahre zurückliegen: außer bei der Errichtung von zusätzlichen Wohnräumen gilt eine 10-Jahres-Frist. Nur bei behindertengerechten Maßnahmen, zur Schaffung von Wohnungen in bisher nicht für Wohnzwecke genutzten Gebäuden und bei Gebäuden mit einer Nutzheiz-Energiekennzahl (NEZ) > 100 kWh/m²a, bei einem A/V-Verhältnis von 0,8, wenn nach erfolgter Sanierung eine NEZ ≤ 65 kWh/m²a erreicht wird, ist die Baubewilligung nicht maßgeblich. Die Einkommensgrenzen verhalten sich wie unter Punkt 2.1.1.1.

Die Förderung besteht in einer Gewährung von:

- Annuitätenzuschüssen zu einem Bankdarlehen, wobei die Verzinsung des bezuschussten Darlehens höchstens 0,25 Prozentpunkte über der Sekundärmarktrendite "Emittenten Gesamt" (SMR) liegen darf, in Höhe von:
 - Max. 37.000 Euro mit einer Laufzeit von 15 Jahren
 - Max. 40.000 Euro bei Passivhäusern mit einer Laufzeit von 25 Jahren
- Durch Zusatzförderungen für den Einbau eines Heizkessels für fossile Brennstoffe (Voraussetzung: Vorlage einer Heizlastberechnung) und bei Verwendung ökologischer Dämmstoffe (zB Hanf, Flachs, Holzfaser, Schafwolle, Stroh, Zellulose, Kork) erhöht sich die Förderungsobergrenze um jeweils maximal 3.000 Euro.

-

³ Vgl. Land OÖ (2011a)

"Förderbar sind nur solche Sanierungsarbeiten, die durch gewerblich befugte Unternehmen durchgeführt oder deren Vornahme durch Materialrechnungen in Höhe von mindestens 150 Euro nachgewiesen werden können. Der Nachweis erfolgt durch die Vorlage von Rechnungen, welche nicht älter als 2 Jahre sein dürfen. Die Wohnung muss zur Befriedigung eines dauernden Wohnbedürfnisses regelmäßig verwendet werden. Zweitwohnsitze werden nicht gefördert. Eine Förderung kann nur dann gewährt werden, wenn bei Neubezug einer sanierten Wohnung die bisherige Wohnung nachweislich weitervermietet oder die Wohnung verkauft wird. Bei gleichzeitigem Vorliegen von Haupt- und Nebenwohnsitzen muss das Sanierungsobjekt seit mindestens 2,5 Jahren mit Hauptwohnsitz vom Förderungswerber bewohnt werden. Wurde eine Förderung für den Kauf des Hauses bewilligt, so kann maximal der Differenzbetrag von 37.000 Euro bzw. 40.000 Euro bewilligt werden. Eine nicht widmungsgemäße Verwendung hat die Einstellung bzw. Rückforderung der Annuitätenzuschüsse zur Folge." Land OÖ (2011a)

Nachfolgende ökologische Mindestkriterien sind einzuhalten:

- Wärmedämmstoffe und Baustoffe müssen HFKW-frei und HFCKW-frei sein.
- Die Gebäudehülle muss bei einem nachträglichen Einbau einer Wohnraumlüftungsanlage mit Wärmerückgewinnung eine Luftdichtigkeit mit einem n₅₀-Wert kleiner oder gleich 1,5 h⁻¹ aufweisen.
- Außer bei Passivhausbauten ist bei einer Heizungserneuerung ein wassergetragenes System vorzusehen.
- Die Wärmeverteilungs/-abgabe-Systeme müssen eine fachgerechte hydraulische Einregulierung aufweisen.
- Elektrische Durchlauferhitzer sind bei der kompletten Erneuerung des Warmwasserbereitungs-Systems nicht zulässig.
- Bei Erneuerung der Heizungsumwälzpumpen sind gemäß Energieverbrauchs-Kennzeichnung (EU-Energie-Label) nur Pumpen der Klasse A, A+ und A++ zulässig.

In den nächsten Punkten werden die förderungswürdigen Maßnahmen näher beschrieben:

2.1.1.2.1 SANIERUNG VON EINZELBAUTEILEN⁴

Bei dieser Förderungsmaßnahme kann ein Annuitätenzuschuss in der Höhe von 25% bei Einzelbauteilmaßnahmen gewährt werden. Die einzuhaltenden energetischen Mindeststandards sind in

Tah	حاام	2-1	aufo	elistet.
ıav	CIIC	- - I	auiu	CIISICI.

_

⁴ Vgl. Land OÖ (2011a)

Tabelle 2-1: Sanierung von Häusern bis zu 3 Wohnungen: Grenzwerte für einzelne Bauteile

Bauteil	Grenzwert
Außendecke / Dach / oberste Geschoßdecke	≤ 0,15 W/m²K
Dachschrägen	≤ 0,18 W/m²K
Fenster und Türen gegen Außenluft	≤ 1,20 W/m²K
Fensterglas (bei Tausch nur des Glases)	≤ 1,10 W/m²K
Außenwände und Wände gegen den Dachraum und Garagen	≤ 0,25 W/m²K
Decken und Wände zu unbeheiztem Keller	≤ 0,35 W/m²K
Erdberührte Wände und Fußböden	≤ 0,35 W/m²K
Unbeheizter Keller gegen Außenluft	≤ 0,50 W/m²K
Dämmstärke Fensterlaibung (die angegebene Mindest-Dämmstärke bezieht sich auf eine Wärmeleitfähigkeit von 0,04 W/mK)	≥ 3 cm

Quelle: Land OÖ, eigene Darstellung.

2.1.1.2.2 GESAMTE ENERGETISCHE SANIERUNG UND LANDESBONUS "THERMISCHE SANIERUNG"⁵

In Tabelle 2-2 werden die Annuitätenzuschüsse, welche vom Land OÖ für die gesamte energetische Sanierung angeboten werden, dargestellt.

Tabelle 2-2: Sanierung von Häusern bis zu 3 Wohnungen: Annuitätenzuschuss für verschiedene Sanierungsstufen

Maßnahmen	NEZ-Obergrenze	Annuitätenzuschuss	Laufzeit Darlehen
Bauteilsanierung	Keine	25 %	15 Jahre
Sanierungsstufe I	≤ 75 kWh/m²a	30 %	15 Jahre
Sanierungsstufe II	≤ 65 kWh/m²a	35 %	15 Jahre
Sanierungsstufe III	≤ 45 kWh/m²a	40 %	15 Jahre
Passivhaussanierung	≤ 15 kWh/m²a	40 %	25 Jahre

Quelle: Land OÖ, eigene Darstellung.

⁵ Vgl. Land OÖ (2011a)

Es kann ein Landesbonus "Thermische Sanierung" in Form eines Bauzuschusses in Höhe von 375 Euro für eine Dienstleistung bestehend zumindest aus der Erstellung von Ausschreibungsunterlagen, der technischen Prüfung von Angeboten und der technischen Abnahmeprüfung der Ausführung und in Verbindung mit einer Sanierungsförderung gewährt werden. Durch welche Personen diese Maßnahmen durchgeführt werden dürfen, ist auf der Internetseite des Landes OÖ nachzulesen.

2.1.1.2.3 ERNEUERUNG VON HEIZKESSELN⁶

Beim Heizkesseltausch für fossile Brennstoffe werden nur Brennwertgeräte mit einem Annuitätenzuschuss in Höhe von 25% gefördert, wenn die notwendige NEZ (dargestellt in Tabelle 2-2 für 30%, 35% und 40% Annuitätenzuschuss) schon durch frühere Baumaßnahmen erreicht wurden.

2.1.1.2.4 FÖRDERUNG FÜR DIE SCHAFFUNG VON NEUEM WOHNRAUM

"Werden mit der Sanierung auch Erweiterungsmaßnahmen an einem Wohnhaus (Zu- und Einbau von Wohnräumen und Wohnungen) durchgeführt, so kann die Höhe des Darlehens, bis zu der Annuitätenzuschüsse bzw. Bauzuschüsse gewährt werden, bis 800 Euro pro m² neu geschaffener Wohnnutzfläche, jedoch maximal 37.000 Euro betragen.

Eine Förderung für die Errichtung von zusätzlichen Wohnräumen kann gewährt werden, wenn die Erteilung der Baubewilligung zum Zeitpunkt der Einbringung des Ansuchens bei der zu erweiternden Wohnung mindestens 10 Jahre zurückliegt. In diesem Fall beträgt die Höhe der förderbaren Summe, bis zu welcher Annuitätenzuschüsse bzw. Bauzuschüsse gewährt werden, höchstens 13.500 Euro.

Für die Schaffung von Wohnungen in bisher nicht für Wohnzwecke genutzten Gebäuden kann die Höhe des Darlehens, bis zu der Annuitätenzuschüsse bzw. Bauzuschüsse gewährt werden, bis 800 Euro pro m² neu geschaffener Wohnnutzfläche, jedoch maximal 37.000 Euro betragen." Land OÖ (2011a)

2.1.1.3 Sanierung von Wohnhäusern mit mehr als 3 Wohnungen⁷

Diese Förderung kann von HauseigentümerInnen, Wohnungseigentümergemeinschaften und Bauberechtigten in Anspruch genommen werden. Dabei werden Erhaltungs- und Verbesserungsmaßnahmen, ein nachträglicher Lifteinbau, der Anschluss ans Fernwärmenetz, behindertengerechte Maßnahmen, die Schaffung von Wohnungen in bisher nicht für Wohnungszwecke genutzten Gebäuden, die Erweiterungsmaßnahmen an bestehenden Wohnhäusern bei gleichzeitiger Sanierungsförderung und die Sanierung von Ortskernen gefördert.

Es werden Annuitätenzuschüsse zu Darlehen eines Geldinstitutes:

im Normalfall mit einer Laufzeit von 15 Jahren

⁶ Vgl. Land OÖ (2011a)

⁷ Vgl. Land OÖ (2011a)

- bei Sanierung von Ortskernen von 20 Jahren und
- bei Passivhäusern von 25 Jahren gewährt.

Auch Eigenmittel einer gemeinnützigen Bauvereineigung können bezuschusst werden. Bis zu 80% der förderbaren Kosten (ohne Umsatzsteuer), jedoch mindestens 43 Euro und höchstens 800 Euro pro m² Wohnraum kommen für einen Zuschuss in Frage. Eine Ausnahme dieser Regel bildet der nachträgliche Lifteinbau.

Annuitätenzuschüsse werden in der Höhe von 25%, 30%, 35% und 40% gewährt. Dabei müssen bestimmte NEZ erreicht werden, welche auf der Seite des Landes OÖ aufgelistet sind. Für den nachträglichen Lifteinbau ist ein 50%iger Annuitätenzuschuss möglich.

Folgende Einzelbaumaßnahmen werden gefördert, sofern die erforderlichen Nachweise innerhalb von drei Monaten nach Beginn der Sanierungsarbeiten erfolgen:

- Behindertengerechte Maßnahmen
- Anschluss an Fernwärmenetz
- Sanierung / Schaffung von neuem Wohnraum ohne Verbesserung des Energiestandards für Förderung nötige NEZ durch frühere Maßnahmen bereits erreicht
- Heizkesseltausch für Förderung nötige NEZ durch frühere Maßnahmen bereits erreicht
- Bei Gebäuden, welche die für die 30%ige Förderung notwendige NEZ nicht erreichen, werden einzelne zusammengehörige Bauteile mit Mindest-Dämmstärken bzw. höchstzulässigen U-Werten gefördert, welche auch für Häuser mit bis zu 3 Wohnungen gelten und somit in Fehler! Verweisquelle konnte nicht gefunden werden. ersichtlich ind.

Die Einhaltung der NEZ und der ökologischen Mindestkriterien und sonstigen technischen Vorgaben ist die Voraussetzung für die Bewilligung eines Annuitätenzuschusses in Höhe von 30%, 35% oder 40%. Eine Ausnahme sind denkmalgeschützte Gebäude.

"Die Höhe des mit Annuitätenzuschüssen geförderten Darlehens beträgt 80 Prozent der förderbaren Kosten, jedoch höchstens 1.000 Euro pro m² sanierter Nutzfläche, wenn die Sanierung in Ortskernen durchgeführt wird. Bei denkmalgeschützten Objekten in Ortskernen gibt es keine Obergrenze pro m² sanierter Nutzfläche für das geförderte Darlehen. Bei gewerblichen und privaten Bauträgern muss bei der Sanierung im Ortskern eine kostendeckende Miete verrechnet werden, die nicht über die nachgewiesenen Finanzierungskosten der Sanierung hinausgehen darf. Eine Förderung für die Sanierung von Ortskernen kann jedoch nur bei gleichzeitiger Förderung durch die Gemeinde in Anspruch genommen werden." Land OÖ (2011a)

Für die Sanierung bei zeitgleicher Erweiterung von Wohnräumen und Wohnungen und die Schaffung von Wohnungen in bisher nicht für Wohnzwecke genutzten Gebäuden werden 80% der förderbaren Kosten, jedoch maximal 800 Euro pro m² gefördert. Der Anschluss an Fernwärme wird ebenfalls gefördert.

Auch hier muss die Erteilung der Baubewilligung des Gebäudes zum Zeitpunkt der Einbringung des Ansuchens mindestens 20 Jahre zurückliegen. Ausnahmen stellen wiederum der nachträgliche Lifteinbau, sowie der Anschluss an ein Fernwärmenetz und die Schaffung von Wohnungen in bisher nicht für Wohnzwecke genutzte Gebäude dar. Die geförderten Wohnungen müssen Hauptwohnsitze sein. Voraussetzungen und einzuhaltende Energiestandards für die

durchzuführende Überprüfung von zentralen Heizungsanlagen sind auf der Seite des Landes OÖ erschöpfend aufgelistet.

2.1.1.4 Sanierung von Wohnheimen⁸

Die Förderung der Sanierung von Wohnheimen kann durch Hauseigentümer und Bauberechtigte beantragt werden. Es werden Annuitätenzuschüsse für Darlehen von 50% der förderbaren Kosten mit einer Laufzeit von 15 Jahren gewährt. Mit der Bauausführung darf vor Annahme der Zusicherung nicht begonnen werden. Die Baubewilligung muss hier nur 15 Jahre zurückliegen.

2.1.1.5 Radonförderung – Vorsorge und Sanierung⁹

Es werden Radonmessungen in ganz Oberösterreich, bautechnische Sanierungen bei einer Überschreitung der Radonkonzentration von 1000 Bq/m³ und Vorsorgemaßnahmen bei Neubauten im Radonrisikogebiet gefördert. Nähere Erläuterungen sind auf der Internetplattform des Landes OÖ zu finden.

Folgende Personen können Förderungen beantragen:

- Haus- oder Wohnungseigentümer sowie Mieter bei Messungen
- Haus- oder Wohnungseigentümer bei Altbausanierungen
- Bauwerber bei Neubauten

2.1.2 Förderungen der Österreichischen Bundesregierung

In diesem Kapitel wird ein Überblick über die aktuellen Förderungen das Thema Sanierung betreffend der österreichischen Bundesregierung gegeben. Die Abwicklung aller nachfolgend dargestellten Fördermaßnahmen wird durch die Kommunalkredit Public Consulting GmbH durchgeführt. Die Fördermaßnahmen setzen sich aus dem Sanierungsscheck 2011, der Förderung thermischer Sanierung von Betrieben und das Programm Mustersanierung 2011 zusammen, welche in weiterer Folge beschrieben werden.

2.1.2.1 Sanierungsscheck 2011¹⁰

Eine andere Förderungsmöglichkeit besteht durch den Sanierungsscheck der Österreichischen Bundesregierung. Für die thermische Gebäudesanierung wurden für das Jahr 2011 70 Millionen Euro zur Verfügung gestellt. Die Gelder aus dem Fördertopf sollen für effiziente

⁹ Vgl. Land OÖ (2011a)

⁸ Vgl. Land OÖ (2011a)

¹⁰ Detailinformationen zum Sanierungsscheck unter: <u>www.umweltfoerderungen.at</u>

Klimaschutzprojekte eingesetzt werden und so zur CO₂-Reduktion beitragen. Mit Stand April 2011 war nur ein Viertel der Fördersumme ausgeschöpft.¹¹

Die Förderung kann nur von natürlichen Personen, welche entweder EigentümerInnen oder MieterInnen eines Ein- oder Zweifamilienwohnhauses, oder einer Wohnung im mehrgeschossigen Wohnbau in Anspruch genommen werden. MieterInnen und EigentümerInnen¹² (ohne Beschluss der Eigentümergemeinschaft) von Wohnungen können lediglich eine Förderung für den Tausch der Fenster und Außentüren beantragen.

20% der förderungsfähigen Investitionskosten, die Mehrwertsteuer ist inklusive, werden als einmaliger, nicht rückzahlbarer Zuschuss zugestanden. Gedeckelt ist diese Förderung bei thermischer Gesamtsanierung mit 5.000 € je Antragsteller für thermische Sanierung, bei zusätzlicher Umstellung des Wärmeerzeugungssystems erhöht sich dieser Betrag um 1.500 €. Bei alleiniger Durchführung einer Teilsanierung können lediglich 3.000 € bzw. im mehrgeschoßigen Wohnbau 2.000 € beantragt werden.

Die Förderung kann vor Sanierungsbeginn zwischen 1.3.2011 und 30.6.2011 beantragt werden und bis einschließlich 30.9.2012 muss die Endabrechnung bei der Kommunalkredit Public Consulting GmbH, welche diese Aktion abwickelt, eingelangt sein. Die Baubewilligung des zu sanierenden Gebäudes muss vor dem 1.1.1991 erteilt worden sein.

2.1.2.2 Thermische Sanierung Betriebe¹³

Auch diese Fördermaßnahme wird von der Österreichischen Bundesregierung mit einer Gesamtförderhöhe von 30 Millionen Euro unterstützt. Die Abwicklung wird duch die Kommunalkredit Public Consulting GmbH durchgeführt. Auch hier sollen die Fördergelder für effiziente Klimaschutzprojekte zur CO₂-Reduktion eingesetzt werden.

Antragsteller können Unternehmen, unabhängig von der Größe, sein. Explizit ausgenommen sind juristische und natürliche Personen, die von anderen Förderungssystemen, besonders der Wohnbauförderung, erfasst werden.

Es wird an dieser Stelle nicht detailierter auf diese Förderung eingegangen, da Betriebsgebäude nicht in das errechnete Sanierungspotential fallen. Die genauen Fördersätze können in der Förderinformationen zu dieser Aktion nachgelesen werden.

¹¹ Angaben It. Wirtschaftsblatt: http://www.wirtschaftsblatt.at/home/oesterreich/branchen/sanierungsscheck-drei-viertel-der-foerdermittel-sind-noch-zu-haben-466591/index.do

¹² "Für die Durchführung einer thermischen Sanierungsmaßnahme des gesamten Wohnhauses muss ein einstimmiger Beschluss der Eigentümergemeinschaft für die Durchführung derselben vorliegen. Der Förderantrag ist von jedem/r Wohnungseigentümer/in für die eigene Wohnungseinheit separat einzureichen." Bundesministerium für Wirtschaft, Familie und Jugend (2011a)

¹³ Detailinformationen zur thermischen Gebäudesanierung für Betriebe unter: www.umweltfoerderung.at

2.1.2.3 Programm Mustersanierung 2011¹⁴

Das Programm Mustersanierung 2011 ist ein Teil des Klima- und Energiefonds der österreichischen Bundesregierung mit dem Ziel, durch Best Practice Beispiele die Sanierungstätigkeit und den Einsatz erneuerbarer Energietechnologien in Gebäuden zu verstärken.

Fördernehmer können natürliche und juristische Personen sein, die zur Ausübung gewerblicher Tätigkeit berechtigt sind. Die Anträge können zwischen 12.4.2011 und 15.11.2011 eingereicht werden. In weiterer Folge wird nicht mehr auf diese Förderung eingegangen, da sie für das berechnete Sanierungspotential nicht zu beantragen ist.

2.1.3 Der Energieausweisausweis als Informationsinstrument

Im Energieausweis, ein Dokument welches ein Gebäude energetisch beurteilt, sind wichtige Kennzahlen enthalten. Die Berechnung ist je Bundesland verschieden. Der wichtigste Kennwert des Energieausweises ist die Nutzheiz-Energiekennzahl (NEZ) – der spezifische Heizwärmebedarf HWB [kWh/m²a]. Dieser gibt den Heizwärmebedarf des Gebäudes für ein Jahr bezogen auf die Brutto-Grundfläche an. Dieser Wert beschreibt, wieviel Heizenergie pro Quadratmeter Wohnnutzfläche jährlich am Referenzstandort¹⁵ (Linz) benötigt wird. Der standortbezogene Heizwärmebedarf gibt hingegen die benötigte Heizenergiemenge für den tatsächlichen Standort des Gebäudes an. Warmwasserbedarf und Umwandlungsverluste sind hier noch nicht berücksichtigt. Die NEZ hat große Bedeutung zur Gewährung der Wohnbauförderung in den verschiedenen Bundesländern (siehe Kapitel 2.1.1). 2008 änderte sich die Berechnung des Energieausweises. Folgende wichtige Neuheiten sind seitdem in Kraft getreten:

- Monatsbilanzierung¹⁶
- Einberechnung der Verluste des Heizsystems (HTEB Heiztechnikenergiebedarf)
- Nachweis der Vermeidung sommerlicher Überhitzung bei Wohngebäuden¹⁷
- Kühlbedarf bei Nichtwohngebäuden
- Lüftungssysteme, Klimatisierung
- Beleuchtung

Gilt auch für Sanierung und Nichtwohngebäude

In der OIB-Richtlinie 6 kann die Effizienz von Gebäuden anhand einer Skala grafisch dargestellt werden. Dabei ist der HWB_{BGF,Ref} in kWh/m²a maßgeblich. In Tabelle 2-3 werden diese Effizienzklassen aufgezeigt.

¹⁴ Detailinformationen zum Programm Mustersanierung unter: www.umweltfoerderung.at

¹⁵ Berechnung auf Basis eines Referenzklimas, nicht der tatsächliche Standort, dient zu Vergleichszwecken.

¹⁶ Datengrundlage sind Klimadaten und Nutzungsprofile in der ÖNORM B 8110-5, Berechnung nur mehr mit validierter Berechnungssoftware möglich.

¹⁷ Durch eine Simulation wird überprüft ob im Sommer ein Grenzwert über eine bestimmte Zeitspanne nicht überschritten wird.

Tabelle 2-3: Effizienzklassen Energieausweis

Klasse	HWB _{BGF,Ref}					
A++	≤ 10 kWh/m²a					
A+	≤ 15 kWh/m²a					
Α	≤ 25 kWh/m²a					
В	≤ 50 kWh/m²a					
С	≤ 100 kWh/m²a					
D	≤ 150 kWh/m²a					
Е	≤ 200 kWh/m²a					
F	≤ 250 kWh/m²a					
G	> 250 kWh/m²a					

Quelle: OIB-Richtlinie 6 (2007), eigene Darstellung.

Im Folgenden werden ausgewählte Begriffsbestimmungen¹⁸ kurz beschrieben.

- Heizwärmebedarf (HWB): Wärmemenge, die den konditionierten Räumen zugeführt werden muss, um deren vorgegebene Solltemperatur von 20°C in beheizten Räumen It. ÖNORM 8110-5. einzuhalten.
- Heizwärmebedarf (HWB*): Heizwärmebedarf für Nicht-Wohngebäude, wobei für die Luftwechselrate, die inneren Wärmelasten (ohne Berücksichtigung der Beleuchtung) die Bestimmungen für Wohngebäude herangezogen werden.
- Endenergiebedarf (EEB): Energiemenge, die dem Heizsystem und allen anderen energietechnischen Systemen zugeführt werden muss, um den Heizwärmebedarf, den Warmwasserwärmebedarf, den Kühlbedarf sowie die erforderlichen Komfortanforderungen an Belüftung und Beleuchtung decken zu können, ermittelt an der Systemgrenze des betrachteten Gebäudes.
- Heizenergiebedarf (HEB): Jener Teil des Endenergiebedarfs, der für die Heizungs- und Warmwasserversorgung aufzubringen ist.
- Heiztechnikenergiebedarf (HTEB): Verluste des Heiztechniksystems.

Seit 2008 ist die Energiebilanz für jeden Monat zu berechnen. Die zugrunde liegende Berechnungsformel wird wie folgt dargestellt:

$$Q_{h} = (Q_{T} + Q_{V}) - \eta^{*}(Q_{S} + Q_{I})$$
(3-1)

Q_h Heizwärmebedarf HWB (im Jahr [kWh/a], pro m² [kWh/m²a])

Q_T Transmissionswärmeverluste (zB über Dach, Fenster, Wand, Boden – U-Werte)

_

¹⁸ OIB-Richtlinie – Begriffsbestimmungen (2007)

- Q_V Lüftungswärmeverluste (zB durch mechanische Fensterlüftung)
- η Ausnutzungsgrad (abhängig von der Wärmespeicherung der Bauteile bzw. von der Bauweise)
- Q_S solare Gewinne (zB durch Fenster, Wintergarten, ...)
- Q_I innere Gewinne (zB durch Personen, Geräte, ...)

In Tabelle 2-4 werden die Grenzwerte des Heizwärmebedarfs des oberösterreichischen Baurechts den Fördergrenzen des Landes Oberösterreich gegenübergestellt. Dabei wird deutlich, dass die Werte schrittweise verringert werden, um langsam eine Besserung der Gebäudestruktur zu bewirken. Dabei werden die europäischen Vorgaben berücksichtigt. Durch diese Übersicht wird ersichtlich, dass die baurechtlichen Grenzwerte merklich über den Werten für ein Wohnbaudarlehen liegen, wodurch für die Senkung des Energiebedarfs ein weiterer Anreiz geschaffen wird.

Tabelle 2-4: HWB max. für neue Wohngebäude [kWh/2a]

OÖ Baurecht It. OIB RL NEU ¹⁹		Fördergrenzen in OÖ zum Vergleich ²⁰				
Bisher	90,0	Einfaches Wohnbaudarlehen	Ab 2007	50,0		
Bis 31.12.2009	78,0		Seit 2009	45,0		
Ab 01.01.2010	66,5	Niedrigstenergiehaus		30,0		
		Passivhaus	Bis 2005	15,0		
			Seit 2006	10,0		

Quelle: Österreichisches Institut für Bautechnik, Statistik Austria, eigene Darstellung.

Sind für die genaue Berechnung des Energieausweises keine Werte angegeben bzw. können sie für ein Gebäude nicht ermittelt werden, besteht die Möglichkeit sogenannte "Default-Werte"²¹ für die verschiedenen Bauperioden und Bauteile zu verwenden. In Tabelle 2-5 und Tabelle 2-6 sind diese Werte aufgelistet. Für alle nicht erwähnten Bauteile sind die entsprechenden Werte für Außenbauteile einzusetzen.

Tabelle 2-5: Durchschnittswerte für Wärmedurchgangskoeffizienten [W/m²K] für Bauteile verschiedener Bauperioden, Einfamilienhäuser

Bauperiode	KD	OD	AW	DF	FE	G	AT
Vor 1900	1,25	0,75	1,55	1,30	2,50	0,67	2,50
1900 bis 1944	1,20	1,20	2,00	0,90	2,50	0,67	2,50

¹⁹ OIB-Richtlinie 6 (2007)

²⁰ Land OÖ (2011b)

²¹ OIB Leitfaden Energetisches Verhalten von Gebäuden (2007), S. 9

AP 0 – Standardisierung und Konkretisierung der bestehenden Ergebnisse

1945 bis 1960	1,95	1,35	1,75	1,30	2,50	0,67	2,50
Ab 1960	1,35	0,55	1,20	0,55	3,00	0,67	2,50
Systembauweise	1,10	1,05	1,15	0,45	2,50	0,67	2,50
Montagebauweise	0,85	1,00	0,70	0,45	3,00	0,67	2,50

Quelle: Österreichisches Institut für Bautechnik, eigene Darstellung.

Anmerkung: Systembauweise ist eine Bauweise basierend auf systemisierter Mauerwerksbauweise o.ä.; Montagebauweise ist eine Bauweise basierend auf Fertigteilen aus Beton mit zwischenliegender Wärmedämmung;

Tabelle 2-6: Durchschnittswerte für Wärmedurchgangskoeffizienten [W/m²K] für Bauteile verschiedener Bauperioden, Mehrfamilienhäuser

Bauperiode	KD	OD	AW	DF	FE	G	AT
Vor 1900	1,25	0,75	1,55	1,30	2,50	0,67	2,50
1900 bis 1944	1,20	1,20	1,50	0,90	2,50	0,67	2,50
1945 bis 1960	1,10	1,35	1,30	1,30	2,50	0,67	2,50
Ab 1960	1,35	0,55	1,20	0,55	3,00	0,67	2,50
Systembauweise	1,10	1,05	1,15	0,45	2,50	0,67	2,50
Montagebauweise	0,85	1,00	0,70	0,45	3,00	0,67	2,50

Quelle: Österreichisches Institut für Bautechnik, eigene Darstellung.

Legende:

KD Kellerdecke FE Fenster

OD Oberste Geschoßdecke G Gesamtenergiedurchlassgrad

AW Außenwand AT Außentüren

DF Dachfläche

Eine weitere wichtige Kennzahl ist der jährliche Endenergiebedarf 22 . Es ist jene Energiemenge, die zur Deckung des Jahresheizwärmebedarfs, Warmwasserwärmebedarfs und des Kühlbedarfs (Bedarf und Aufwand der Anlagentechnik) benötigt wird. Der jährliche Endenergiebedarf Q_{EEB} wird wie folgt ermittelt:

$$Q_{EEB} = Q_{HEB} + Q_{KEB} + Q_{BFEB} + Q_{LFEB} + Q_{LENI}$$

$$\tag{3-2}$$

Q_{HEB} Jährlicher Heizenergiebedarf gemäß ÖNORM H 5056 [kWh/a]

Q_{KEB} Jährlicher Kühlenergiebedarf gemäß ÖNORM H 5058 [kWh/a] (nur bei Nicht-Wohngebäude)

Q_{BFEB} Jährlicher Energiebedarf für die Befeuchtung gemäß ÖNORM H 5058 [kWh/a] (nur bei Nicht-Wohngebäude)

Q_{LFEB} Jährlicher Energiebedarf für mechanische Luftförderung gemäß ÖNORM H 5058 [kWh/a] (nur bei Nicht-Wohngebäude)

Q_{LENI} Jährlicher Energiebedarf für Beleuchtung gemäß ÖNORM H 5059 [kWh/a] (nur bei Nicht-Wohngebäude)

²² OIB Leitfaden Energetisches Verhalten von Gebäuden (2007), S. 7

2.1.3.1 Rechtliche Grundlagen als Basis für den Energieausweis

Der Energieausweis basiert auf rechtlichen Grundlagen, die im Folgenden kurz erläutert werden.²³

- EU-Gebäuderichtlinie (2002) "Richtlinie 2002/91/EG des Europäischen Parlaments und des Rates vom 16.12.2002 über die Gesamteffizienz von Gebäuden": Hintergrund dieser Richtlinie sind die Klimaschutzziele der EU und ihrer Mitgliedstaaten und sie soll zur Verbesserung der energetischen Effizienz von neuen und bestehenden Gebäuden dienen. Aufgrund dieser Richtlinie musste in jedem EU-Mitgliedsland eine Berechnungsmethode zur Berechnung des Energiebedarfs eines Gebäudes gefunden werden. Daraus ergab sich, dass alle Länder ein eigenes, von einander unabhängiges, Berechnungsmodell entwickelt haben. Die Folge davon war, dass die Modelle nicht miteinander vergleichbar sind.
- Energieausweisvorlagegesetz (EAV 2006): Dieses Gesetz regelt lediglich die Vorlagepflicht von Energieausweisen und die Anpassung an andere Bundesgesetze, macht jedoch keine inhaltlichen Vorgaben. Hierbei ist zu erwähnen, dass auf die Vorlage geklagt werden kann. Weiters besteht eine Haftung des Energieausweiserstellers gegenüber dem Auftraggeber.
- OIB-Richtilinie 6 "Energieeinsparung und Wärmeschutz": In dieser Richtlinie sind Begriffsbestimmungen, die Anforderungen an den Heiz- und Kühlbedarf, den Endenergiebedarf, wärmeübertragende Bauteile, Teile des energietechnischen Systems und sonstige Anforderungen, sowie der Energieausweis geregelt. Die OIB-Richtlinie 6 wurde aufgrund der Neufassung²⁴ der "Richtlinie über die Gesamtenergieeffizienz von Gebäude 2010/31/EU" und zur Einarbeitung der neuen Normenfassungen vollständig überarbeitet.
- OIB-Leitfaden "Energietechnisches Verhalten von Gebäuden": Als technischer Anhang zur OIB-Richtlinie 6 ist vom Österreichischen Institut für Bautechnik ein neuer Leitfaden zur Energieausweisberechnung erarbeitet worden, welcher nach RL 6 verbindlich als Berechnungsmethode vorgeschrieben ist. Er enthält allgemeine Bestimmungen, die Berechnung des Endenergiebedarfs, das vereinfachte Verfahren und Empfehlungen von Maßnahmen für bestehende Gebäude.

2.1.4 Analyse des Online-Berechnungstools von EnergyGlobe

Die Klima- und Energie-Modellregion Strudengau hat sich zum Ziel gesetzt, eine Modellregion für den Schwerpunkt Sanierung des Altgebäudebestandes zu werden. Zu diesem Zweck sollten Best-Practice-Beispielgebäude aus der Region gesucht werden, anhand derer der Sanierungserfolg veranschaulicht und der Bevölkerung zugänglich gemacht wird. Des Weiteren wurde eine Onlineberechnungssoftware, zur Berechnung von Sanierungskosten für die Gesamtsanierung bzw. Teilsanierungen, untersucht. Die vorhin erwähnten Best-Practice-Beispielgebäude sollten mit der Berechnungssoftware simuliert werden, um festzustellen, ob grobe Abweichungen bestehen. Diese Gebäude stehen bis zum Berichtszeitpunkt noch nicht zur Verfügung und können daher im weiteren Vorgehen nicht berücksichtigt werden. Somit beschränkt sich diese Analyse auf die Beschreibung der Berechnungssoftware.

²³ ERB (2010): Vorlesung und Übung "Energieeffizientes und ressourcenschonendes Bauen", 4. Semester

²⁴ OIB aktuell (2011)

2.1.4.1 Analyse Online-Berechnungssoftware "Online Energie-Check fürs Eigenheim"

Die Berechnungssoftware wird auf dem Internetportal "EnergyGlobe" bereitgestellt, einer umfassenden Service- und Beratungsplattform für Konsumenten, Unternehmer und Experten. Betreiber der Webseite ist NEET (Network Energy Efficiency Technology), eine Unterorganisation der ENERGY GLOBE. Es stehen verschiedene Tools zur Verfügung. Es können sowohl Gebäude im Bestand grob berechnet werden, wie auch Sanierungen und Neubauten. Speziell für Gemeinden wurde ein Tool entwickelt, mit dessen Hilfe die aktuelle Energiesituation und Schwachstellen der Kommune festgestellt und durch detailierte Leitfäden und ein Handbuch bei der Umsetzung unterstützt werden. In weiterer Folge werden die einzelnen Berechnungstools anhand von Beispielen überprüft und analysiert.

2.1.4.2 Analyse "Online-Check fürs Eigenheim"

Anhand dieses Tools soll der aktuelle IST-Stand eines Gebäudes mit bis zu 300m² beheizter Wohnfläche ermittelt werden. Anschließend können die Auswirkungen einzelner Sanierungsmaßnahmen auf die Energiekennzahl [kWh/m²a], den Co₂-Ausstoß [kg/a] und den Energieverbrauch pro Jahr getestet und das Ergebnis mit dem IST-Stand gegenübergestellt werden. So werden Veränderungen von Energiekennzahl, CO₂-Ausstoß und Energieverbrauch pro Jahr ersichtlich. In weiterer Folge können anschließend die einzelnen Sanierungsmaßnahmen aufgelistet und bei bestimmten Maßnahmen die benötigte Menge berechnet werden; letzeres durch ein Tool auf der Homepage der Firma bauMax. Da keine Auswahl verschiedener Anbieter möglich ist, kann die Mengenberechnung nicht als objektiv bezeichnet werden. Es ist dabei anzumerken, dass die Firma bauMax Partner der Internetplattform ist.

2.1.4.3 Analyse "Wohnungs-Check"

Das Wohnungs-Check-Berechungstool kann dazu verwendet werden, den energetischen IST-Stand einer Wohnung zu ermitteln und verschiedene Sanierungsmaßnahmen durchzuspielen. Die Eingaben ähneln denen des "Online Energie-Check fürs Eigenheim". In der ersten Eingabemaske des Wohnungs-Checks werden grobe energierelevante Daten, wie beheizte Wohnfläche und Heizung, eingegeben. Anschließend folgt eine Feinanalyse. Allerdings gibt es hier weniger Einstellungsmöglichkeiten als beim Eigenheim-Energie-Check. Nachfolgend können als Sanierungsmöglichkeiten lediglich die Dämmung der Außenwand und die Fenster verändert werden. Die Ergebnisauswertung ist äquivalent zum Eigenheim-Energie-Check.

2.1.4.4 Analyse "Sonnenkollektor-Check"

Nach Eingabe der Eckdaten zur Warmwasserbereitung und Heizung, wie Wohnfläche und Heizung, wird der vorraussichtliche Montageort und danach die Position und der Neigungswinkel abgefragt. Es kann zwischen einfacher Warmwasserbereitung sowie Warmwasserbereitung und Heizungsunterstützung ausgewählt werden. Als Ergebnis werden die Kollektorfläche und der solare Deckungsgrad, sowie der Solarertrag und die Einsparung an CO_2 und Energieträger ausgegeben. Durch einen Link wird man zu den möglichen Förderungen weitergeleitet.

2.1.4.5 Analyse "Finanzierungs-Check"

Dieses Berechnungstool bietet die Möglichkeit, vorab zu berechen, wie hoch die monatlichen Darlehensraten mit einer Fremdfinanzierung sind. Der "Finanzierungsrechner" wird von der Firma Wüstenrot unterstützt. Es kann entweder ein Darlehen ohne Grundbuchseintrag bis maximal 25.000 € oder ein Bauspardarlehen mit Grundbuchseintrag bis maximal 180.000 € ausgewählt werden. Nach Einstellung der gewünschten Darlehenshöhe und der Laufzeit wird sofort eine monatliche Rate berechnet. Anhand eines repräsentativen Beispiels mit der höchst möglichen Darlehenssumme und der längst möglichen Laufzeit werden Details dargestellt. Anschließend kann ein Beratungstermin bei Wüstenrot, BAWAG oder PSK vereinbart werden, welche ebenso Partner der Internetplattform "EnergyGlobe" sind. Im Gegensatz zum Baustoffberechnungstool ist jedoch eine begrenzte Auswahl zwischen dieser drei Firmen möglich. Dennoch kann die Finanzierungsberatung nicht als objektiv beurteilt werden.

2.1.4.6 Analyse "Online-Check Energiespargemeinde"

Träger dieser Aktion sind die ENERGY GLOBE Foundation²⁵, das österreichische Wirtschaftsministerium, der Gemeindebund und die Kronen Zeitung. Die Gemeinden stehen ihren Bürgern am nächsten, sie sind unmittelbar vom Thema Energie mitbetroffen, wie zB durch steigende Heizkosten, sowohl direkt mit den eigenen Gemeindegebäuden, als auch indirekt mit Gebäuden ihrer Gemeindebürger. Durch die Aktion soll hier angesetzt werden, indem Gemeinden geholfen wird, die "aktuelle Energiesituation und Schwachstellen in der Kommune festzustellen"²⁶. Dazu kann der sogenannte "Online-Check" verwendet werden. Weiters wird versucht, durch detaillierte Leitfäden und ein Handbuch, bei der Umsetzung und bei der Kommunikation mit den Bürgern zu helfen. Die Online-Energie-Checks gibt es für Häuser, Wohnungen, Betriebe, Landwirtschaften und öffentliche Gebäude. Angeleitet durch das Handbuch, soll bei der Abwicklung des Projektes geholfen werden. Es wird dabei auch auf Bereiche hingewiesen, die besonders beachtet werden müssen und erklärt, wer informiert werden muss und wann etwas durchgeführt werden soll. Im Kommunikationspaket sind auch Zeittafeln, Checklisten und Bürgerinformationshilfen enthalten.

Der Service ist nicht kostenlos. Des Weiteren sollte der zukünftige Nutzer im Vorhinein mit sich abklären, ob er mit der Datenschutzerklärung einverstanden ist.

Die Berechnungstools für Ein- und Zweifamilienwohngebäude und Wohnungen sind gleich wie für private Nutzer der Plattform und sind bereits unter den Punkten 2.1.4.2 und 2.1.4.3 beschrieben. Einziger Unterschied ist die Auswahlmöglichkeit für die einzelnen Maßnahmen oder eine Gesamtsanierung, für die Professionisten hinzuzuziehen sind.

Im Rahmen der Aktion Energiespargemeinde können auch Betriebe, Landwirtschaften und öffentliche Einrichtungen auf ihren Energieverbrauch hin untersucht werden. Als Ergebnis wird, im Gegensatz zu Ein- und Zweifamilienwohngebäuden, nur anhand eines Energieverbrauchsbalkens, jeweils für Fläche und Menge, angezeigt, wie sich der Betrieb bzw. das landwirtschaftliche oder

-

²⁵ Die ENERGY GLOBE Foundation wurde 2008 gegründet und fungiert als Basis der ENERGY GLOBE Aktivitäten. http://www.energyglobe-foundation.com/gruendung, Zugriff: 09.06.2011

²⁶ www.energiespargemeinde.at, Zugriff: 05.05.2011

öffentlichen Gebäuden im Brachnchenvergleich darstellt. Eine genaue Ausweisung der Energiekennzahl erfolgt im Gratis Online-Check für diese Gebäudetypen nicht.

2.1.4.7 Resümee

Die Berechnungstools bieten hervorragende Möglichkeiten, den Zustand eines Gebäudes grob zu bewerten und mögliche Verbesserungsvarianten zu simulieren. Die Bedienung ist einfach zu handhaben und leicht verständlich. Die Daten können jedoch nur im Ein- und Zweifamilienhausbereich etwas detaillierter eingetragen werden und auch hier muss angemerkt werden, dass die Ergebnisse, denen eines Energieausweises allenfalls in der Größenordnung entsprechen. Bei allen anderen Gebäudetypen, auch öffentliche Gebäude und Betriebsgebäude, konnten die Gebäudedaten nur sehr oberflächlich eingetragen werden. Aus diesem Grund werden die Ergebnisse auch äußerst vage dargestellt. Leider war die Überprüfung der Genauigkeit im Rahmen dieses Berichtes nicht möglich, da ein Modellgebäude aus der Klima- und Energie-Modellregion Strudengau nicht zur Verfügung stand.

Ziel der Maßnahme ist es, eine grobe Abschätzung über den derzeitigen Gebäudebestand in den einzelnen Gemeinden zu geben. Da Ein- und Zweifamilienwohngebäude besonders im ländlichen Raum einen Großteil dieses Bestandes ausmachen und die Berechnung für diesen Typ etwas genauer ist, kann davon ausgegangen werden, dass die Ergebnisse eine realitätsnahe Bewertung wiedergeben.

2.2 Bestimmung des Sanierungspotentials

Im Folgenden wird detailiert darauf eingegangen, wie der Anteil am zu sanierenden Gebäudbestand ermittelt wird, welcher den größten energetischen und ökonomischen Nutzen beinhaltet. Es werden dabei Gebäude aus Bauperioden herangezogen, die einen niedrigen Baustandard aufweisen.

Grundlage der Analyse sind die Resultate der Gebäude- und Wohnungszählung 2004, die aus der Volkszählung 2001 hervorgehen, sowie die Grunddaten der Volkszählung 2001 selbst. Ausgehend von diesen Daten soll im folgenden Kapitel das Potential an Einfamilienhäusern der Bauperiode 1945-1980 in der Region Strudengau, die noch nicht renoviert wurden, abgeschätzt werden und die möglichen energetischen und treibhausgasrelevanten Einsparpotentiale berechnet werden.

2.2.1 Analyse der Gebäude- und Wohnungszählung 2001²⁷

Die zu Grunde liegenden Daten wurden bei der Gebäude- und Wohnungszählung, welche im Mai 2001 zusammen mit der Volkszählung und einer Arbeitsstättenzählung stattfand, erhoben. Diese auf verschiedenen Rechtsgrundlagen beruhende Durchführung der Erhebungen wird zusammen als Großzählung bezeichnet. Dabei wurden 2,05 Millionen Gebäude und 3,86 Millionen Wohnungen, 3,3 Mio. Haushalte mit 8,1 Mio. Personen sowie 0,4 Mio. gewerbliche Arbeitsstätten in Österreich erfasst. Erstmalig wurden, zusätzlich zu den Fragebögen, bei dieser Großzählung Informationen aus intern und extern vorhandenen und zugänglichen Registern einbezogen.

,

²⁷ Statistik Austria (2011a)

Die Ergebnisse wurden sowohl für ganz Österreich, als auch auf Gemeindeebene erfasst und bildet somit eine fundierte Datenbasis und Grundlage für Analysen, Entscheidungen und Maßnahmen. Weiter sollten im Zuge der Erhebungen vom Mai 2001 die Melderegister aller Gemeinden geprüft und berichtigt werden. Somit wurden die Daten zeitgleich für die Volkszählung und für das Meldewesen erhoben.

Die Ergebnisse der Erhebung 2001 wurden, wie auch Ergebnisse aus früheren Erhebungen, in der Datenbank ISIS der Statistik Austria hinterlegt. Die Daten können sowohl auf Bundes- und auch auf Bezirks-Gemeindeebene Länderebene. als und abgefragt werden. gemeindespezifischen Daten dienen als Grunddatenbasis für die weiteren Berechnungen und wurden für die Großzählung 2001 sowie 1991 abgefragt. Durch eine segmentbezogene Auswahl wurden relevante Daten herausgefiltert. Ergänzende Informationen wurden der Online-Plattform "Ein Blick auf die Gemeinde"²⁸ entnommen. Die Informationen über die politischen Bezirke wurden zum Teil aus veröffentlichten Tabellen zum Bestand an Gebäuden und Wohnungen sowie aus den Publikationen zu den Hauptergebnissen der einzelnen Bundesländer und gesamt Österreich der Statistik Austria²⁹ bezogen.

Da die Großzählung 2001 die letzte in Österreich durchgeführte Vollerhebung, welche in einer Datenbank zugänglich gemacht wurde, darstellt, werden die folgenden Berechnungen auf dieser Datenbasis durchgeführt. Spätere Erhebungen können nicht verwendet werden, da entweder die Veröffentlichung der Daten in einem zu geringen Ausmaß erfolgte, wie bei der Probezählung 2006, oder die Ermittlung der Informationen anhand von Stichproben durchgeführt wurde und somit die Genauigkeit nicht ausreichend ist, wie im Fall der Mikrozensuserhebungen.

2.2.2 Analyse der Probezählung 2006

Ziel der Probezählung 2006 war es, herauszufinden, ob eine realitätsgetreue Datenerhebung durch die Zusammenführung interner und externer Verwaltungsregister, welche in Haupt- und Vergleichsregister unterteilt wurden, technisch und organisatorisch möglich ist. Vergleichsregister dienen zur Qualitätssicherung der Basisdaten, wodurch anhand von Erhebungsmerkmalen die Richtigkeit und Vollständigkeit überprüft werden kann.

Zusätzlich wurde für die Probezählung 2006 eine begleitende Stichprobenerhebung von knapp über 20.000 Personen durchgeführt, die einen direkten Vergleich auf Personenebene ermöglichte. So wurde nicht nur aufgrund der Kohärenz mit früheren Volkszählungs- und Mikrozensusergebnissen ein hoher Grad an Übereinstimmung festgestellt.

Für die Gebäude- und Wohnungszählung wurde das Gebäude- und Wohnungsregister GWR verwendet, wobei die zu liefernden Merkmale bis auf Zehntel Prozent vollständig besetzt waren. So wurden zB die Datensätze 3.2.7. "Art der Beheizung der Wohnung" zu über 99,9% befüllt, wodurch von einer vollständigen Befüllung gesprochen werden kann.

Gemeindespezifische Zahlen zur Probezählung 2006 können auf der Online-Plattform "Ein Blick auf die Gemeinden" der Statistik Austria heruntergeladen werden. Diese Daten erreichen jedoch nicht annähernd den Detailgrad der Großzählung 2001. In der Datenbank ISIS sind die Ergebnisse der Erhebung auch nicht hinterlegt.

-

²⁸ Statistik Austria (2011b)

²⁹ Statistik Austria (2004a), Statistik Austria (2004b), Statistik Austria (2004c)

Als Grundlage für die vorläufige Zuweisung von Finanzmitteln wurden die endgültigen Daten der Wohnungsanalyse mit den Daten der Bevölkerungsstatistik für den Stichtag 31.10.2008 fortgeschrieben und ab dem Jahr 2009 für die Zwecke des Finanzausgleichs herangezogen. Daher kann davon ausgegangen werden, dass die Ergebnisse der Probezählung 2006 der Wirklichkeit entsprechen. Da diese Daten jedoch nicht in dem benötigten Detailgrad abrufbar sind, können sie auch im Folgenden nicht für die weitere Potentialanalyse verwendet werden.

2.2.3 Gebäudealtersstruktur der Gemeinden

Gebäude verschiedener Perioden wurden nach den der jeweiligen Zeitperiode entsprechenden Baustandards erbaut. Dadurch ergeben sich unterschiedliche Durchschnitts- und Normwerte sowohl für einzelne Bauteile, als auch für das Gesamtgebäude. So ist beispielsweise die Kennzahl des Heizwärmebedarfs bei Gebäuden der Bauperiode 1971 bis 1980 um ein Vielfaches höher als bei Neubauten der letzten Jahre. Aufgrund dieser unterschiedlichen Baustandards ist die Bestimmung der Altersstruktur der Gebäude für die Potentialermittlung unumgänglich.

Um die Altersstruktur der Gebäude zu bewerten bestehen zwei Möglichkeiten. Zum einen können die Durchschnittssätze für Oberösterreich aus der Publikation 2004 bis 2009 "Wohnen – Ergebnisse der Wohnungserhebung im Mikrozensus Jahresdurchschnitt", herausgegeben von Statistik Austria, verwendet werden. Die Daten des Mikrozensus werden durch Stichproben erhoben. Dazu wurden jedes Quartal durchschnittlich 22.000 Haushalte befragt und anschließend die Werte hochgerechnet. Bei einer zufallsgetreuen Stichprobenauswahl wird ein "verkleinertes", aber sonst wirklichkeitsgetreues Abbild des Merkmalkörpers der Grundgesamtheit geschaffen. Dennoch gibt es besonders bei Stichprobenerhebungen Fehlermöglichkeiten. Im Mikrozensus beträgt der Fehlerbereich ±20%, wodurch auf die Verwendung dieser Daten aufgrund fehlender Genauigkeit verzichtet wird.

Eine weitere Möglichkeit zur Erhebung der Gebäudealtersstruktur ist die Verwendung der Datenbank ISIS der Statistik Austria welche es auch ermöglicht, gemeindespezifische Abfragen durchzuführen. In dieser Abfrage wurde getrennt nach den Gemeinden der Region Strudengau die Bauperiode, die Anzahl der Wohnungen im Gebäude und die Wohnsitzangabe (Haupt- oder Nebenwohnsitz), auf Basis der Großzählungen 2001 und 1991, ermittelt. Erweiterte Daten für die einzelnen Gemeinden der Klima- und Energie-Modellregion Strudengau konnten von der Online-Datenbank "Ein Blick auf die Gemeinden" heruntergeladen werden. Eine weitere Datenquelle stellte die Regionaldatenbank des Landes Oberösterreich dar, welche sich wiederum auf die Großzählung 2001 stützt. Obwohl diese Daten nicht am aktuellen Stand sind, eignen sie sich für die Zwecke der Potentialanalyse aufgrund ihres Detailgrads am besten.

Um statistische Fehler in der Hochrechnung zu vermeiden, werden sämtliche Berechnungen in den weiterführenden Kapiteln auf der Datenbasis der Großzählung 2001 durchgeführt.

2.2.4 Sanierungsrate

Die letzte Vollerhebung des Gebäude- und Wohnungsbestandes wurde 2001 im Rahmen der Volkszählung, mit Stichtag 15. Mai 2001, durchgeführt. In dieser Erhebung wurde unter anderem der Gebäudebestand nach Baujahren, Wohnsitzangabe, Eigentümer und Sanierungsmaßnahmen der letzten 10 Jahre ermittelt.

Die Ergebnisse der Vollerhebung 1991 und jener 2001 sind im Punkt "Wohnsitzangabe – nur mit Nebenwohnsitzangabe" nur bedingt vergleichbar, da als Grundlage für die Zählung 2001 die

Nebenwohnsitze laut Meldewesen dienten, während diese 1991 von den Gemeinden selbst angegeben wurden. Es wird vermutet dass diese Herangehensweise zu einer Erhöhung der Erfassung sämtlicher Wohnungen führte. Die Bereinigung der Nebenwohnsitz-Fälle konnte in Einzelfällen durch evtl. Reklamationsverfahren eine Steigerung der Wohnungen mit Hauptwohnsitzangabe ergeben. Unterblieb in der Erhebung 1991 aus Zeit- oder anderen Gründen eine Erfassung, so konnte dieser Umstand zu einer Zunahme der Wohnungen mit Nebenwohnsitzangabe führen. Auch die Anzahl der Wohnungen ohne Wohnsitzangabe nahm durch die Bereinigung zu. Bezüglich der unterschiedlichen Erhebungsgrundlagen werden die Daten der Erhebung 1991 für die Berechnung des Sanierungspotentials nicht herangezogen.

Im Rahmen der Erstbefüllung des Gebäude- und Wohnungsregisters mit den Ergebnissen der GWZ 2001 wurde versucht, den Anteil der nicht erhobenen Bauperiode zu rekonstruieren. Dies gelang nicht zufriedenstellend für die Gebäude der letzten 10 Jahre. Im Benutzerhandbuch zur Gebäude- und Wohnungszählung 2001³⁰, wird daher angeraten, die Gebäude der Bauperiode von "1991 oder später" und "nicht rekonstruierbar" zu kombinieren. Diese Vorgehensweise wurde auch in den GWZ-Publikationen durchgeführt, wodurch dort die Ausprägung 6 "1991 oder später bzw. nicht rekonstruierbar" ist.

Der Großteil der nicht rekonstruierbaren Gebäude ist dem Einfamilienhausbereich (484 Gebäude insgesamt, davon 435 Hauptwohnsitzgebäude und 49 Nebenwohnsitzgebäude) und den Nichtwohngebäuden (185 insgesamt, davon 181 mit Nebenwohnsitz) zugerechnet. Da die nicht rekonstruierbaren Gebäude größtenteils in die Periode "1991 und später" einzuordnen sind und das Sanierungspotential von Gebäuden dieser Zeitperiode als eher gering einzuschätzen ist, werden nicht rekonstruierbare Gebäude in weiterer Folge nicht mehr berücksichtigt.

Die Recherche ergab, dass zum Zeitpunkt der Gebäude- und Volkszählung 2001 in der Klima- und Energie-Modellregion Strudengau die Gesamtgebäudeanzahl 9.636 betrug. Davon haben 784 Gebäude keine Haupt- oder Nebenwohnsitzangabe und bei 780 Gebäuden ist die Bauperiode nicht rekonstruierbar. Diese beiden Gruppen werden in den folgenden Berechnungen nicht weiter berücksichtigt. Durch diese Maßnahme verringert sich die Anzahl an Gebäuden für die Potentialanalyse, wodurch eine Überschätzung des Sanierungspotentials nahezu ausgeschlossen werden kann.

Somit ergibt sich eine Gebäudeanzahl von 8.257. Wie in Tabelle 2-7 ersichtlich, ist ein großer Anteil dieser Gebäude in den Perioden von 1945 bis 1980 erbaut worden, dh 44% der Hauptwohnsitzgebäude und knapp 40% der Nebenwohnsitzgebäude wurden in den beiden Zeiträumen erbaut.

Tabelle 2-7: Gebäudebestand mit Wohnsitzangabe in Strudengau nach Bauperiode

Hauptwohnsitze	Vor 1919	1919-1945	1945-1960	1961-1980	1981-1990	1991 und später
Wohngeb. mit 1-2 Whg.	1.355	408	892	2.326	1.530	768
Wohngeb. mit 3-10 Whg.	69	22	49	77	50	35
Wohngeb. mit >10 Whg.	3	0	1	21	9	5

³⁰ Statistik Austria (2006), S. 71

_

Summe	1.427	430	942	2.424	1.589	808
Nebenwohnsitze	Vor 1919	1919-1945	1945-1960	1961-1980	1981-1990	1991 und später
Wohngeb. mit 1-2 Whg.	181	71	83	171	84	44
Wohngeb. mit 3-10 Whg.	3	0	0	0	0	0
Wohngeb. mit >10 Whg.	0	0	0	0	0	0
Summe	184	71	83	171	84	44

Quelle: Statistik Austria, 13.04.2011, eigene Darstellung.

In der Erhebung 2001 wurden Fragen zu den Sanierungen der vergangenen 10 Jahre gestellt. Aus den ermittelten Daten kann die Sanierungsrate berechnet werden. Die Sanierungsmaßnahmen wurden in vier Kategorien unterteilt:

- Thermische Sanierung und Fenstererneuerung
- Thermische Sanierung ohne Fenstererneuerung
- Keine thermische Sanierung, jedoch Fenstererneuerung
- Keine thermische Sanierung und keine Fenstererneuerung

Dabei wurden folgende Daten für Oberösterreich ermittelt:

Tabelle 2-8 Energetische Sanierung des Gebäudebestandes It. Gebäude- und Volkszählung 2001

	Fenstererneueru	ıng	Keine Fenstererneuerung		
Wärmedämmung	Gebäude	Wohnungen	Gebäude	Wohnungen	
Wohngebäude mit 1-2 Whg.	12.801	17.867	9.485	13.034	
Wohngebäude mit 3-10 Whg.	2.040	12.004	1.391	8.308	
Wohngebäude mit >10 Whg.	1.187	20.448	408	7.239	
Keine Wärmedämmung	Gebäude	Wohnungen	Gebäude	Wohnungen	
Wohngebäude mit 1-2 Whg.	31.771	42.655	221.580	268.649	
Wohngebäude mit 3-10 Whg.	3.389	17.324	17.314	92.436	
Wohngebäude mit >10 Whg.	752	13.582	4.086	70.774	

Quelle: Statistik Austria, Kollmann (2009), eigene Darstellung

In Tabelle 2-8 ist zu erkennen, dass Wohngebäude mit über 10 Wohnungen zwar den kleinsten Anteil an thermisch sanierten Gebäuden mit Fenstererneuerungen haben, jedoch der Anteil an Wohnungen mit ca. 40% am höchsten ist. Weiters muss beachtet werden, dass sich Sanierungen bei Ein- und Zweifamilienhäusern anders in Kosten und Nutzen auswirken, als bei Mehrfamilienwohnhäusern, da dort das Oberflächen-Volumenverhältnis vorteilhafter liegt. Auf der

anderen Seite sind die Förderungen, je nach Anzahl der Wohnungen im Gebäude, unterschiedlich. Es wird somit deutlich, dass in weiterer Folge größere Wohngebäude und Ein- bis Zweifamilienhäuser getrennt betrachtet werden müssen, um ein realistisches Sanierungspotential abbilden zu können.

Die Anzahl der Wohnungen in Wohngebäuden wurde aus Daten für den Bezirk Perg auf die Region Strudengau umgelegt. Daraus hat sich für Wohngebäude mit 3 bis 10 Wohnungen gezeigt, dass diese zwar nur 3,6% der Gebäude der Region darstellen, jedoch 14% der Wohnungen beinhalten. Der Anteil der Wohngebäude mit mehr als 10 Wohnungen beträgt nur 0,5%, während darin über 5% der Wohnungen situiert sind.

Für die Ermittlung des Sanierungspotentials sind nur Gebäude relevant, bei denen noch keine thermische Sanierung und keine Fenstererneuerung durchgeführt worden ist. Für die endgültige Bestimmung des Potentials müssen noch Berichtigungen, wie der Anteil landwirtschaftlicher Gebäude, durchgeführt werden. Es wird daher angenommen, dass der für Oberösterreich berechnete Prozentsatz (Kollmann, 2009) auch für die Region Strudengau und die einzelnen Gemeinden angewendet werden kann.

Gebäude, bei denen nur eine Fenstererneuerung durchgeführt wurde, werden nicht in das Potential mit eingerechnet, da angenommen wird, dass auch bei diesen Häusern aktuell kein Energieeinsparungspotential vorhanden ist, da kein Interesse an Sanierungsmaßnahmen seitens der Besitzer besteht. Diese Bauten werden jedoch auch nicht zu den sanierten Gebäuden hinzugerechnet, was wiederum zu einer Unterschätzung des wirklichen Potenzials führen wird.

Somit wird der rechte untere Teil der Tabelle 2-8 für die Berechnungen herangezogen und anhand folgender Formel die Sanierungsrate ermittelt:

$$\delta_n^G = \frac{\sum_{i=1}^1 G_n^{Saniert}}{\sum_{i=1}^1 G_n^{Bestand 91}} \tag{3-3}$$

Wobei δ_n^G den Anteil an thermisch sanierten Gebäuden mit n Wohnungen im Zeitraum 1991 bis 2001 in Oberösterreich, $G_n^{saniert}$ die Anzahl der thermisch sanierten Gebäude mit n Wohnungen und $G_n^{Bestand\ 91}$ die Summe aller sanierten und nicht sanierten Gebäude mit n Wohnungen, die vor 1991 errichtet wurden, beschreibt.

Tabelle 2-9: Berechnung der Gebäudesanierungsrate

Gebäude	Thermische Sanierungen	Anzahl der Gebäude	δ^{G}		
Gebaude	in Gebäuden	Anzam der Gebaude	Gesamt	Jährlich	
Wohngebäude mit 1-2 Whg.	22.286	212.123	10,5%	1,05%	
Wohngebäude mit 3-10 Whg.	3.431	18.571	18,5%	1,85%	
Wohngebäude mit >10 Whg.	1.595	5.490	29,1%	2,91%	

Quelle: Statistik Austria, Kollmann (2009), eigene Darstellung

Wie in Tabelle 2-9 ersichtlich beträgt die Gebäudesanierung in der Periode 1991-2001 für Ein- und Zweifamilienwohngebäude jährlich 1,05%, während die Sanierungsrate bei Wohngebäuden mit mehr als 2 Wohnungen deutlich höher ist. Die ermittelten Sätze werden in weiterer Folge für die Berechnung des Sanierungspotentials der Klima- und Energie-Modellregion Strudengau und den einzelnen Gemeinden verwendet.

Seitens der Statistik Austria liegen keine aktuelleren Daten betreffend durchgeführter Wärmedämmungen vor. Die letzten Erhebungen diesbezüglich wurden, wie bereits erwähnt, im Zuge der Gebäude- und Volkszählung 2001 durchgeführt. Daher muss die Anzahl der zwischen 2001 und 2010 durchgeführten Wärmedämmschutzmaßnahmen abgeschätzt werden. Dazu besteht die Möglichkeit, die Ergebnisse der Gebäude- und Wohnungszählung 2001 bezüglich Sanierung linear zu extrapolieren. Dies hätte zur Folge, dass auf Ereignisse, wie der Änderung von Förderungen, etc. in den Berechnungen keine Rücksicht genommen wird.

Ein anderer Ansatz stellt die Bestimmung des Potentials mit Hilfe der OÖ. Wohnbauberichte für den Zeitraum 2001 bis 2010 dar. Dies gestaltet sich insofern schwierig, da in den Wohnbauberichten andere Klassifikationen der Gebäudetypen gewählt wurden. So wird nur zwischen "Mehrgeschoßigem Wohnbau" und "Eigenheime und Kleinhausbau" unterschieden, wohingegen in der Großzählung 2001 die drei Gruppen "Wohngebäude mit 1-2 Wohnungen", "3-10 Wohnungen" und ">10 Wohnungen" unterteilt wurden. Des Weiteren wird in den oö. Wohnbauberichten die Art der Altbausanierung nicht aufgezeigt; es wird vielmehr nur zwischen den beiden Gebäudekategorien und einem Lifteinbau unterschieden. Da die Anzahl der durchgeführten Sanierungen, die in den OÖ Wohnbauberichten angeführt sind, anhand der tatsächlichen Förderfälle gezählt werden, kann davon ausgegangen werden, dass die Datenerfassung hier genauer und lückenloser ist, als bei der Erhebung der Statistik Austria. Jedoch sind diese Daten, nach Angaben der Autorin (Kollmann, 2009) nicht öffentlich zugänglich. Es wurde durch die Statistik Austria in der Gebäude- und Volkszählung 2001 nicht erhoben, ob für Sanierungen eine Förderung durch die öffentliche Hand in Anspruch genommen wurde.

Aufgrund der Unterschiede in den Erhebungsmethoden können die Angaben aus den oö. Wohnbauberichten nicht auf die Wohngebäudekategorien der Statistik Austria umgelegt werden. Weiters ist anzumerken, dass eine Sanierung auch ohne die Inanspruchnahme einer Wohnbauförderung durchführbar ist; ein weiterer Punkt warum die Daten beider Erhebungen nicht vergleichbar sind.

2.2.5 Berechnung des Sanierungspotentials

Im vorangegangenen Kapitel wurde erläutert, dass durch die Verwendung unterschiedlicher Gebäudeklassifizierungen die Werte der oö. Wohnbauberichte nicht für die Berechnung verwendet werden können. Somit müssen für die weitere Behandlung und die Berechnung des Sanierungspotentials Annahmen getroffen werden:

- Als Anzahl der thermischen Sanierungen, die an Gebäuden mit einem Baujahr vor 1991 durchgeführt wurden, werden die Daten aus der Gebäude- und Wohnungszählung 2001 verwendet.
- Die ermittelten Werte, die sogenannte Sanierungsrate, auf Basis der Gebäude- und Wohnungszählung 2001, werden linar extrapoliert und für die Jahre 2001-2010 fortgeschrieben.

- Nicht beachtet werden können:
 - die Anzahl der Sanierungen, die vor 1991 durchgeführt wurden, da dies in den vorangegangen Großzählungen nicht behandelt wurde und auch die OÖ. Wohnbauberichte (Kollmann, 2009) darüber keine Rückschlüsse erlauben,
 - die Anzahl der Sanierungen, die ohne Förderung durchgeführt wurden, da darüber keine offiziellen Statistiken aufliegen,
 - Gebäude ohne Wohnung, dh. Nichtwohngebäude,
 - Gebäude ohne Hauptwohnsitzangaben (nur Nebenwohnsitze), da der Großteil der Förderungen des Landes OÖ nur für Hauptwohnsitzgebäude und -wohnungen gewährt wird,
 - Gebäude, die keiner Bauperiode zugeordnet werden können, wie in Kapitel 2.2.4 beschrieben.

Duch diese Annahmen soll eine Überschätzung des Potentials verhindert werden; eine Unterschätzung ist zunehmend wahrscheinlicher.

Zuerst wurde das gesamte Potential an unsanierten Gebäuden für die Klima- und Energie-Modellregion Strudengau ermittelt, siehe Tabelle 2-7. Die Ergebnisse der einzelnen Gemeinden finden sich wiederum im Anhang. Für die Region ergibt sich somit ein Gesamtpotential von 7.080 Gebäuden, wobei 6.780 davon Ein- bzw. Zweifamilienwohngebäude sind. Da in diesem Potential jedoch die Gebäude aller Bauperioden beinhaltet sind, ist dieser Wert nur bedingt aussagekräftig.

Tabelle 2-10: Sanierungspotential aller Gebäudetypen und Bauperioden für die Region Strudengau

Sanierungspotential gesamt					
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential	
Wohngebäude mit 1-2 Whg.	7.576	1,05%	796	6.780	
Wohngebäude mit 3-10 Whg.	326	1,85%	64	262	
Wohngebäude mit >10 Whg.	51	2,91%	13	38	
Summe	7.953		873	7.080	

Quelle: Statistik Austria, eigene Darstellung und Berechnungen.

In weiterer Folge ist das Sanierungspotential für die Periode 1945 bis 1980 ausgewiesen. Es wurden die Gebäude dieser Baujahre gewählt, da der Baustandard in dieser Zeit gering war und sich daher hohe Heizwärmebedarfswerte für diese Gebäude ergeben. In Kollmann (2008) wurden die durchschnittlichen Nutzenergiebedarfskennzahlen der verschiedenen Bauperioden dargestellt (siehe Tabelle 2-11). Aufgrund der hohen durchschnittlichen Heizwärmebedarfswerte ergeben sich zum einen sehr hohe jährliche Heizkosten und zum anderen ist die Wärmeenergieeinsparung in dieser Gruppe dadurch sehr hoch.

Tabelle 2-11: Nutzenergiebedarfskennzahlen [kWh/m²a]

Bauperiode	Einfamilienhaus	Mehrfamilienhaus klein	Mehrfamilienhaus groß
Vor 1919	188	121	103
1919 bis 1944	193	121	106
1945 bis 1960	226	136	120
1961 bis 1970	186	118	103
1971 bis 1980	191	122	104
1981 bis 1990	130	88	78
Nach 1991	99	67	60

Quelle: Kollmann (2009).

Aus der Tabelle 2-12 kann herausgelesen werden, dass es in der Klima- und Energie-Modellregion Strudengau aktuell ein Potential von 2.886 zu sanierenden Gebäuden der Perioden 1945 bis 1980 gibt. Davon sind knapp 96% dem Ein- und Zweifamilienhausbereich und über 3,7% Wohngebäuden mit 3 bis 10 Wohnungen zuzuordnen. Nur ein geringer Anteil von 21 Gebäuden betrifft Wohngebäude mit über 10 Wohneinheiten. Trotz dieser geringen Gebäudeanzahl beinhaltet dieser Gebäudetyp über 7% der Wohneinheiten der Region und weitere 13% der Wohneinheiten befinden sich in Wohngebäuden mit 3 bis 10 Wohnungen.

Tabelle 2-12: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Region Strudengau

Sanierungspotential 1945-1980					
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential	
Wohngebäude mit 1-2 Whg.	3.080	1,05%	323	2.757	
Wohngebäude mit 3-10 Whg.	133	1,85%	25	108	
Wohngebäude mit >10 Whg.	29	2,91%	8	21	
Summe	3.242		356	2.886	

Quelle: Statistik Austria, eigene Darstellung und Berechnungen.

Da für die zu renovierenden Gebäude die Sanierungsförderungen des Landes OÖ interessant und bedeutsam sind, wird in weiterer Folge genauer auf diesen Themenbereich eingegangen. Für die Inanspruchnahme vieler dieser Förderungen muss die Erteilung der Baubewilligung mindestens 20 Jahre vor der Einreichung des Förderansuchens stattgefunden haben. Dies trifft auf die Gebäude der Periode 1945 bis 1980 zu.

2.3 Kosten verschiedener Sanierungmaßnahmen, inkl. Heizwärme- und CO₂- Einsparungspotential

In diesem Kapitel werden die einzelnen Sanierungsmaßnahmen und deren Kosten näher betrachtet. Dabei werden unter anderem die gesamten Energieeinsparungspotentiale, sowie die Energieeinsparungspotentiale in verschiedenen Szenarien untersucht. Die CO₂-Vermeidungskosten, also Kosten, die durch Maßnahmen mit dem Ziel der Vermeidung von Treibhausgasemissionen entstehen, wurden ebenso berechnet und sind im Anschluss an jedes Unterkapitel dargestellt.

Folgende Maßnahmen werden betrachtet:

- Tausch von Fenstern und Außentüren
- Dämmung der Kellerdecke
- Dämmung der Geschoßdecken
- Dämmung der Außenwände
- Thermische Sanierung
- Gesamtsanierung (thermische Sanierung und Fenster- bzw. Außentürentausch)

Die Kosten, der energetische Effekt und das durchschnittleiche Heizwärmeeinsparpotential der einzelnen Maßnahmen werden in Kollmann (2009) für Ein- und Zweifamilienwohngebäude dargestellt.

In diesem Kapitel wird zunächst die Herangehensweise aus der oben angeführten Studie für Einund Zweifamilienwohngebäude erläutert und die Kosten der einzelnen Sanierungsmaßnahmen detailliert dargestellt. Des Weiteren werden die Daten aus den Studien Kollmann (2008) und Tichler et al. (2009) dazu verwendet, die Sanierungskosten für Mehrfamilienwohngebäude zu berechnen. Im Anschluss daran werden die Heizwärmeeinsparungspotentiale für die Klima- und Energie-Modellregion Strudengau berechnet.

Es wurden zwei Szenarien angenommen, anhand derer die Einsparung je Maßnahme dargestellt wird. In diesen Szenarien wird eine Steigerung der derzeitigen Sanierungsrate angenommen. Die beiden Szenarien unterscheiden sich in der Annahme der Sanierungsrate von 2% bzw. 3% bei Ein- und Zweifamilienwohngebäuden.

Im letzen Schritt werden die CO₂-Vermeidungskosten und die CO₂-Einsparungspotentiale für die gesamte Region Strudengau, basierend auf der Studie Tichler et al. (2010), berechnet.

Im Anhang befinden sich die Ergebnisse für die Gemeinden der Klima- und Energie-Modellregion Strudengau. Dargestellt werden das gesamte Sanierungspotential aller Gebäude aus allen Bauperioden, das Sanierungspotential der Hauptwohnsitzgebäude aus der Bauperiode 1945 bis 1980, das gesamte Heizwärmeeinsparungspotentail für die Gebäude aus der Bauperiode 1945 bis 1980, sowie die Einsparung in den beiden Szenarien.

Wie eingehend bereits erwähnt, werden in weiterer Folge allgemeine Daten zur Herangehensweise erläutert und im Anschluss in den Unterkapiteln die Ergebnisse für die einzelnen Sanierungsmaßnahmen dargestellt. Im letzten Unterkapitel wird nocheinmal eine zusammenfassende Übersicht über die Resultate gegeben.

In Kollmann (2009) wurden, für alle Sanierungsmaßnahmen von Ein- und Zweifamilienwohngebäuden, Angebote bei in Oberösterreich ansässigen Unternehmen eingeholt.

Um Größenvariationen mitzuberücksichtigen wurde der Kostendurchschnitt für zwei Modellgebäude jeweils für die Jahre 1959 und 1970 gebildet. Es handelt sich dabei um die Sanierung eines Einfamilienhauses. Bei den Angeboten wurde nur die einfachste Ausführung berücksichtigt, ausgeschlossen wurden dekorative Elemente wie Fensterkreuze oder besonders gearbeitete Bauteile. Die Modellgebäude werden nachfolgend kurz beschrieben. Die Gebäudegröße liegt bei beiden Gebäuden über dem oberösterreichischen statistischen Durchschnitt, wodurch es zu einer Überschätzung der Sanierungskosten kommen kann.

Modellgebäude 1³¹

In Abbildung 2-1 wird Modellgebäude 1 dargestellt. Modellgebäude 1 unterscheidet sich von Modellgebäude 2, da es über keinen Zubau verfügt. Für das Gebäude 1 wurden zwei unterschiedliche Baujahre angenommen: Modellgebäude 1a mit Baujahr 1959 und Modellgebäude 1b mit Baujahr 1970. Die grundlegenden Gebäudeeigenschaften sind für beide Modelltypen gültig, das Baujahr ist dabei unerheblich. Es wurde ein mittlerer U-Wert für das Gebäude mit Baujahr 1959 von 1,13 W/m²K und für das Gebäude mit Baujahr 1970 von 0,98 W/m²K ermittelt. Der mittlere U-Wert u_M ermittelt sich wie folgt:

$$u_{M} = \frac{Fläche des Gebäudeteils*U-Wert}{A}$$
 (3-4)

Wobei unter Fläche die jeweilige Fläche eines Bauteils in m² verstanden wird.

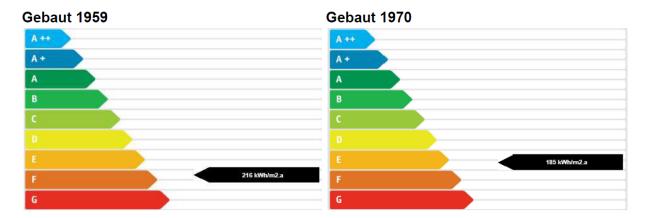
Abbildung 2-1: 3D-Modell des Modellgebäudes 1 sowie 2D-Frontalansicht

Quelle: Kollmann (2009), S. 204.

Die Modellgebäude wurden mit den Klimadaten der Region Wels-Land berechnet. Die dort vorherrschenden klimatischen Bedingung zählen zu der Klimaregion Nord und entsprechen so dem Klima der Region Strudengau. In Tabelle 2-13 sind die allgemeinen Gebäudedaten aufgelistet. Genauere Angaben können Kollman (2009) entnommen werden.

_

³¹ Vgl. Kollmann (2009)


Tabelle 2-13: Allgemeine Gebäudedaten Modellgebäude 1

Gebäudedaten	BJ 1959 und 1970
Brutto-Grundfläche [m²]	198,64
Netto-Grundfläche [m²]	158,45
Beheiztes Brutto-Volumen [m³]	585,98
Charakteristische Länge I _c ³²	1,32
Kompaktheit (Fläche/Volumen)	0,76

Quelle: Kollmann (2009), eigene Darstellung.

Sowohl für Modellgebäude 1a, als auch für Modellgebäude 1b wurde angenommen, dass bis zum Berechnungszeitpunkt keine Sanierungsmaßnahmen durchgeführt wurden. Somit ergab die Berechnung für das Gebäude mit Baujahr 1959 eine Nutzenergiezahl von 216 kWh/m²a und für das Baujahr 1970 von 185 kWh/m²a (siehe Abbildung 2-2).

Abbildung 2-2 Energieausweise für das Modellgebäude 1 für BJ 1959 und 1970

Quelle: Kollmann (2009), S. 208.

Modellgebäude 2³³

Wie in Abbildung 2-3 dargestellt, besteht der Unterschied zu Modellgebäude 1 in einem Zubau. Die Berechnungen wurden wiederum für die angenommenen Baujahre 1959, Modellgebäude 2a, und 1970, Modellgebäude 2b, durchgeführt. Die Detailwerte zu den Gebäuden können wiederum in Kollmann (2009) nachgelesen werden. Es wurde ein mittlerer U-Wert für das Gebäude mit Baujahr 1959 von 1,09 W/m²K und für das Gebäude mit Baujahr 1970 von 0,93 W/m²K ermittelt.

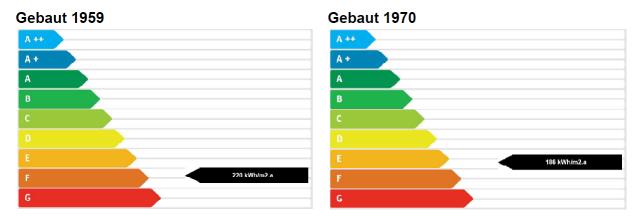
³² Der Geometriekennwert für die Kompaktheit eines Gebäudes stellt das Oberflächen-Volumsverhältnis dar. Die Kompaktheit entspricht dem Kehrwert der charakteristischen Länge. Bei gegebenen Volumen sind Transmissionswärmeverluste umso geringer, je kleiner das A/V-Verhältnis bzw. je größer I_c ist.

³³ Vgl. Kollmann (2009)

Abbildung 2-3: 3D-Modell des Modellgebäudes 2 sowie 2D-Frontalansicht

Quelle: Kollmann (2009), S. 209.

Die wichtigsten gebäudespezifischen Daten können aus Tabelle 2-14 herausgelesen werden. Weitere Details sind in Kollmann (2009) dargestellt.


Tabelle 2-14: Allgemeine Gebäudedaten Modellgebäude 2

Gebäudedaten	BJ 1959 und 1970
Brutto-Grundfläche [m²]	228,02
Netto-Grundfläche [m²]	182,5
Beheiztes Brutto-Volumen [m³]	677,09
Charakteristische Länge I _c	1,27
Kompaktheit (Fläche/Volumen)	0,79

Quelle: Kollmann (2009), eigene Darstellung.

Es wurde abermals bei beiden Gebäudetypen angenommen, dass seit der Errichtung keine Sanierungsmaßnahmen durchgeführt wurden. Durch die veränderten Gebäudedaten ergab sich für Modellgebäude 2a eine Nutzenergiekennzahl von 220 kWh/m²a und Modellgebäude 2b von 186 kWh/m²a.

Abbildung 2-4: Energieausweise für das Modellgebäude 2 für BJ 1959 und 1970

Quelle: Kollmann (2009), S. 211.

Alle vier betrachteten Gebäude reihen sich in die Kennwerte für Einfamilienwohnhäuser (siehe Tabelle 2-11) ein. Somit kann davon ausgegangen werden, dass es sich, von der Bauart, für Österreich durchschnittliche Gebäude handelt.

Kostenberechnung³⁴

Für die Berechnung der Kosten wurde die Barwertmethode verwendet, mit welcher "der monetäre Wert der zukünftigen Energieeinsparungen gemäß der folgenden Gleichung abdiskontiert wird um ihn mit der Investitionssumme, die zur Realisierung der Energieeinsparung notwendig ist, zu vergleichen."³⁵

$$V_K = \sum_{t=0}^{T} CF_t (1+r)^{-t}$$
 (3-5)

V_K ist der Barwert der Energieeinsparungen, CF_t entspricht den monetär bewerteten Energieeinsparungen zum Zeitpunkt t, r dem Diskontsatz und t dem Zeitraum, über den die Investition abdiskontiert wird. Für die Berechnung wurden folgende Annahmen getroffen³⁶:

- Der Barwert wurde aufgrund des Einflusses des Diskontsatzes auf drei Varianten berechnet:
 - Diskontsatz = Leitzinssatz des Euroraumes im Jahr 2008 = 4%
 - Diskontsatz = Kreditzinssatz für Wohnbau (private Haushalte) = 6%
- Die Energiepreisentwicklung hat einen wesentlichen Einfluss auf die Rentabilität der Sanierungsmaßnahme. Daher wurden drei verschiedene Preisentwicklungen dargestellt:
 - Der Preis für Wärme bleibt konstant bei 0,065 €/kWh³⁷.

35 Kollmann (2009), S. 212

³⁴ Vgl. Kollmann (2009)

³⁶ Kollmann (2009), S. 213

- Der Preis für Wärme steigt pro Jahr um 4%.
- Der Preis f

 ür W

 ärme steigt pro Jahr um 6%.

In den folgenden Unterkapiteln werden die einzelnen Sanierungsmaßnahmen genauer betrachtet. Es werden dabei die Grundlagen und Berechnungen von Kollman (2008) verwendet und beschrieben. Grundsätzlich wird vorweg genommen, dass für die gleichzeitige Umsetzung verschiedener Sanierungsmaßnahmen unter Umständen höhere Förderungen beansprucht werden können und sich die einzelnen Haushalte im Vorfeld darüber informieren sollten. Dieser Ansatzpunkt wurde vernachlässigt, da das Hauptaugenmerk auf den Berechnung der Kosteneffizienz lag. Die derzeitigen Förderungen des Landes Oberösterreich sind in Kapitel 2.1.1 beschrieben.

In einem weiteren Schritt wird das gesamte, durch die einzelnen Maßnahmen mögliche, Einsparungspotential der Region Strudengau berechnet und dargestellt. Die gemeindespezifischen Ergebnisse finden sich im Anhang. Um den Zusammenhang mit dem, von der oberösterreichischen Landesregierung beschlossenen, Maßnahmenplan "Energiezukunft 2030" herzustellen, werden anschließend zu jedem Sanierungsschritt die CO₂-Vermeidungskosten aufgezeigt.

Sogenannte Vermeidungskosten sind "zusätzliche Kosten (bzw. Ersparnisse), die sich durch den Einsatz einer Technologie mit geringerer Treibhausgasintensität gegenüber dem jeweils vorherrschenden Stand der Technik ergeben (ohne Berücksichtigung von Sekundäreffekten aus volkswirtschaftlicher Sicht), und die aus Sicht des jeweiligen Entscheiders bewertet werden, dh unter Berücksichtigung der jeweils spezifischen Diskontierungsraten und Amortisierungszeiträume."³⁸

Diese Kosten wurden im Zuge einer Studie ermittelt und die für den vorliegenden Bericht relevanten Maßnahmen in dem Bericht "Analyse von Vermeidungskosten von Treibhausgasemissionen in Oberösterreich – Studie 2"³⁹ veröffentlicht. Die Datenbasis dieser Studie wurde aus der Studie Tichler et al. (2009) entnommen.

In den folgenden Unterkapiteln werden die einzelnen Sanierungsmaßnahmen und die dabei entstehenden Kosten bzw. die CO₂-Vermeidungskosten beschrieben. Die gesamte Darstellung erfolgt auf Basis der Ausführungen in Kollmann (2009) und Tichler et al. (2009) und wurde zusammengefasst bzw. teils wörtlich übernommen.

2.3.1 Tausch von Fenstern und Außentüren

Als erste Sanierungsmaßnahme wurde der Austausch der veralteten Fenster und Außentüren in den Modellgebäuden untersucht.⁴⁰ Durch den Zubau in Modellgebäude 2 verändert sich die Anzahl der Fenster, die Kosten bleiben jedoch unverändert. Es wurde für alle Bauteile – Fenster,

³⁹ CO₂-Vermeidungskosten (2010)

³⁷ Gewichteter Heizenergiepreis für die Energieträger Heizöl extraleicht, Erdgas und Fernwärme, Stand: Sommer 2008.

³⁸ McKinsey (2007)

⁴⁰ Vgl. Kollmann (2009)

Terrassentüren, Eingangstüren⁴¹ – im Bestand ein U-Wert von 2,5 angenommen, wobei nicht zwischen den Bauperioden 1959 und 1970 unterschieden wurde. Die neu verbauten Bauteile haben einen U-Wert von 0,7 W/m²K.

Die Angebotseinholung erfolgte bei zwei oberösterreichischen Anbietern und wurde für den Ausbau und die fachgerechte Entsorgung der alten Fenster, die Materialkosten und die Arbeitskosten für den fachgerechten Einbau der neuen Fenster inkl. Fensterbänke durchgeführt. In Tabelle 2-15 werden die Kosten aufgelistet.

Tabelle 2-15: Kosten für Einbau, Ausbau, Entsorgung Fenster und Außentüren (ohne MwSt.)

Bauteil	Kosten
Ausbau, Entsorgung	1.500
Einbau	2.500
Fenster	7.300
Fensterbänke	1.000
Gerüst	2.200
Summe	14.500
Summe ohne Ausbau und Entsorgung	13.000

Quelle: Kollmann (2009), eigene Darstellung.

Von der Autorin wurde angemerkt, dass durch den selbständigen Ausbau und die Entsorgung der Bauelemente eine Einsparung von ca. 10% erfolgen kann. Der Einbau sollte jedoch von einem Fachmann durchgeführt werden, da hierfür Fachkenntnisse notwendig sind. Aus diesem Grund wurde diese Maßnahme in den Berechnungen nicht weiter beachtet. Somit betragen die Kosten für die Sanierungsmaßnahme Fenster- und Außentürentausch:

Sanierungskosten exkl. MwSt.: 13.000 €
 Sanierungskosten inkl. MwSt.: 15.600 €

Eine Förderung in Form eines Annuitätenzuschusses von 25% wird für diese Sanierungsmaßnahme gewährt, wenn ein U-Wert von ≤ 1,20 W/m²K⁴² erreicht wird und für die gesamte Förderhöhe ein Kredit aufgenommen wird. Im gegebenen Fall wurde mit einer Laufzeit von 15 Jahren und einem fixen Zinssatz von 6% gerechnet. Zur Berücksichtigung möglicher Kostenveränderungen wurden die in Tabelle 2-15 aufgezeigten Kosten um ± 10% variiert. Die Darlehenskostenberechnungen wurden exklusive und auch inklusive Mehrwertsteuer berechnet. Die Ergebnisse werden in Tabelle 2-16 dargestellt.

_

⁴¹ "Für Eingangstüren gibt es nach Auskunft der Anbieter keine standardisierte U-Wert Berechnung. Der U-Wert für diesen Bauteil entspricht einer Schätzung der Anbieter.", Kollmann (2009), S. 214

⁴² Gemäß Prüfungszeugnis.

Tabelle 2-16: Darlehenskosten für die Finanzierung der Maßnahme "Fenster- und Außentürentausch"

	Exkl. MwSt [€]		Inkl. MwSt [€]			
	IST	+ 10%	- 10%	IST	+ 10%	- 10%
Darlehen	13.000	14.300	11.700	15.600	17.160	14.040
DR ohne Zuschuss jährlich	1.310	1.441	1.179	1.572	1.729	1.415
DR ohne Zuschuss über Laufzeit	19.648	21.613	17.683	23.578	25.935	21.220
DR mit Zuschuss jährlich	982	1.081	884	1.179	1.297	1.061
DR mit Zuschuss über Laufzeit	14.736	16.210	13.262	17.683	19.452	15.915
Reduktion der DR durch Zuschuss jährlich	327	360	295	393	432	354
Reduktion der DR durch Zuschuss über Laufzeit	4.912	5.403	4.421	5.894	6.484	5.305

Quelle: Kollmann (2009), eigene Darstellung. Anmerkung: DR = Darlehensrückzahlung = Tilgung.

Wie in Tabelle 2-16 veranschaulicht, beläuft sich die jährliche Tilgung ohne Zuschuss auf 980 € bis 1.440 €, mit Zuschuss auf 740 € bis 1.080 €. Der wesentliche Einfluss des Annuitätenzuschusses auf die Rückzahlungen ist hier besonders deutlich zu erkennen.

Durch die Maßnahme "Tausch Fenster und Außentüren" ergaben sich folgende Nutzenergiekennzahlen und Energieeinsparungen für die 4 Modellgebäude, wie in Tabelle 2-17 dargestellt.

Tabelle 2-17: Nutzenergiekennzahlen und Energieeinsparungen für die Maßnahme "Fenster- und Außentürentausch"

Modellgebäude	NEZ [kWh/m²a]		Reduktion	Reduktion
	Alt	Neu	[%]	[kWh]
1a	216	191	11,6	5.454
1b	185	160	13,5	5.440
2a	220	198	10,0	5.448
2b	186	165	11,3	5.437

Quelle: Kollmann (2009), eigene Darstellung.

Im Schnitt wird mit der Maßnahme eine Einsparung von 11,5% gegenüber dem Ist-Stand erreicht, was einer jährlichen energetischen Einsparung von 5.400 kWh entspricht.

In Tabelle 2-18 werden die Barwerte der Energieeinsparungen für verschiedene Szenarien und für zwei verschiedene Kreditlaufzeiten ausgewiesen. Die aufgezeigten Werte gelten für alle 4 Modellgebäude. Es wurden folgende Annahmen für die Berechnungen getroffen⁴³:

Diskontsatz: 4%, 6% und 20%

Lebensdauer: 25 Jahre

Energiepreis: 6,5 Cent/kWh⁴⁴, drei Preiszenarien:

Konstant über die Lebensdauer

+ 4% p.a. über die Lebensdauer

+ 6% p.a. über die Lebensdauer

Kreditlaufzeit: 15 Jahre

Zinssatz: 6%

Förderung: Annuitätenzuschuss in Höhe von 25%

Es ist noch anzumerken, dass der Barwert geringer ist, je höher der Diskonstatz ist und umso höher ist, je höher das Preiswachstum ist.

Tabelle 2-18: Barwert der Energieeinsparungen durch Tausch von Fenster und Außentüren, verschiedene Szenarien

Barwert der Energieeinsparungen bei [€]	15 Jahre Laufzeit	25 Jahre Laufzeit
Diskontsatz 4%, Preis konstant	3.903	5.483
Diskontsatz 6%, Preis konstant	3.409	4.487
Diskontsatz 4%, Preis 4%	5.063	8.438
Diskontsatz 6%, Preis 4%	4.362	6.649
Diskontsatz 4%, Preis 6%	5.804	10.705
Diskontsatz 6%, Preis 6%	4.967	8.278

Quelle: Kollmann (2009), eigene Darstellung.

Um eine Aussage über die Kosteneffizienz der Maßnahme treffen zu können, wurden die Ergebnisse aus Tabelle 2-18 kumuliert mit und ohne Annuitätenzuschuss bzw. unter verschiedenen Annahmen mit und ohne Mehrwertsteuer dargestellt.⁴⁵

⁴⁴ Gewichteter Heizenergiepreis über Heizöl extraleicht, Erdgas und Fernwärme, Stand: Sommer 2008

⁴³ Vgl. Kollmann (2009)

⁴⁵ Vgl. Kollmann (2009)

Tabelle 2-19: Kumulierte Kosten der Maßnahme "Tausch Fenster und Außentüren" über die Kreditlaufzeit mit und ohne Annuitätenzuschuss, mit und ohne MwSt.

	Ohne Annuitätenzuschuss	Mit Annuitätenzuschuss
Exkl. MwSt. IST-Kosten	19.648	14.736
Exkl. MwSt. + 10% Kosten	21.613	16.210
Exkl. MwSt. – 10% Kosten	17.683	13.262
Inkl. MwSt. IST-Kosten	23.578	17.683
Inkl. MwSt. + 10% Kosten	25.935	19.452
Inkl. MwSt. – 10% Kosten	21.220	15.915

Quelle: Kollmann (2009), eigene Darstellung.

Aufgrund der Ergebnisse in Tabelle 2-18 und Tabelle 2-19 ist die Sanierungsmaßnahme "Tausch von Fenster und Außentüren" bei Ein- und Zweifamilienwohngebäuden in keinem der gezeigten Szenarien kosteneffizient realisierbar. Somit ist eine Durchführung der Maßnahme vor Ablauf der tatsächlichen Nutzbarkeit nicht rentabel. Sollte jedoch, aufgrund des Zustandes der entsprechenden Bauteile, ohnehin eine Sanierung in Betracht gezogen werden, kann diese Maßnahme als unter Umständen rentabel bezeichnet werden, da die errechnete Einsparung die Mehrkosten von energetisch besseren Bauteilen möglicherweise aufwiegt. Differenzen zwischen errechneten und tatsächlichen Energieeinsparungen können sich dennoch durch zB das unterschiedliche Lüftungsverhalten ergeben.

Die Berechnung der Kosten für Mehrfamilienwohngebäude wurde aus der Studie Tichler et al. (2009) übernommen. In dieser Studie wurde davon ausgegangen, dass sich die Kosten für eine Gesamtsanierung an die Kosten dieser Maßnahme bei Ein- und Zweifamilienwohngebäuden anlehen. So wurden Kosten von 210 €/m² für die Gesamtsanierung von Ein- und Zweifamilienwohngebäuden ermittelt, welche auch für die Berechnung der Kosten für Mehrfamilienwohngebäude mit 3 bis 10 Wohnungen und mit mehr als 10 Wohnungen herangezogen wurden.

Davon ausgehend wurden die Kosten der Maßnahme "Gesamtsanierung" nach dem prozentuellen Anteil bei Ein- und Zweifamilienwohngebäuden bestimmt. Somit ergeben sich folgende Sanierungskosten für den Tausch der Fenster und Außentüren von 24.870 € für ein Mehrfamilienwohngebäude mit 3 bis 10 Wohnungen und für ein Mehrfamilienwohngebäude mit mehr als 10 Wohnungen betragen die Maßnahmenkosten 65.230 €. In diese Berechnung floss die durchschnittliche Wohnnutzfläche ein, deren Berechnung nachstehend beschrieben ist.

Im nächsten Schritt wurde das gesamte Einsparungspotential, welches sich aufgrund der einzelnen Maßnahmen ergibt, für die Klima- und Energie-Modellregion Strudengau und die einzelnen Gemeinden berechnet. Die Ergebnisse der Region werden im Folgenden dargestellt, die Detailergebnisse der Gemeinden und eine Gesamtübersicht befinden sich im Anhang. Die Berechnungsschritte sind für die sechs Maßnahmen gleich.

Zunächst wurde die durchschnittliche Wohnnutzfläche der einzelnen Wohngebäude berechnet. Dazu wurden die Daten der Statistik Austria⁴⁶ aus der Gebäude- und Wohnungszählung 2001 verwendet und die durchschnittliche Nutzfläche für jeden Gebäudetyp berechnet. In Abbildung 2-5 zeigt sich, dass die Nutzfläche bei Ein- bis Zweifamilienwohngebäuden zwischen 100 und 130 m² schwankt und diese Schwankung mit den Ergebnissen von Gebäuden mit 3 bis 10 und über 10 Wohnungen korreliert. Da keine detailierteren Daten für die Klima- und Energie-Modellregion Strudengau vorlagen, wurden die oberösterreichischen Durchschnittswerte der Bauperiode 1945 bis 1980, in der rechten Spalte dargestellt, für die weiteren Berechnungen herangezogen.

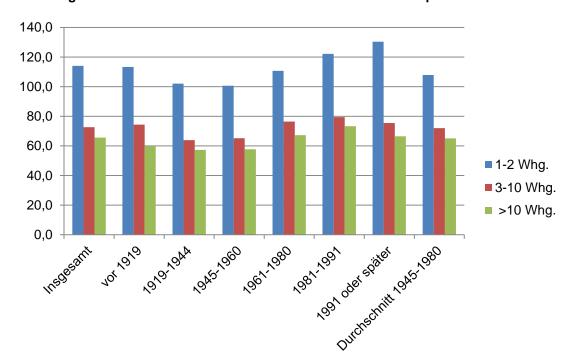


Abbildung 2-5: Durchschnittliche Wohnnutzfläche in m² nach Bauperioden für Oberösterreich

Quelle: eigene Berechnungen.

Die durchschnittliche Anzahl der Wohnungen je Gebäude wurde mithilfe der Daten für den Bezirk Perg für die Region Strudengau prozentuell berechnet⁴⁷. Es wurde angenommen, dass sich die Anzahl der Wohnungen in der Klima- und Energie-Modellregion genauso darstellt wie für den gesamten Bezirk Perg. Somit weisen Ein- bis Zweifamilienwohngebäude durchschnittlich 1,2 Wohnungen je Gebäude, Gebäude mit 3 bis 10 Wohnungen im Schnitt 5 Wohnungen und Wohngebäude mit mehr als 10 Wohnungen ungefähr 14,6 Wohnungen auf.

Im Anschluss daran wurde der durchschnittliche Heizwärmebedarf in kWh/m²a berechnet. Dabei wurden zuerst die Nutzenergiekennzahlen für die Bauperioden 1945 bis 1960 und 1961 bis 1980 aus Tabelle 2-11 verwendet und das gesamte Einsparungsoptential für die einzelnen Sanierungsmaßnahmen errechnet. In einem zweiten Schritt wurden die Werte aus Tichler et al. (2009) verwendet und wiederum das Gesamtpotential ermittelt. Bei einem direkten Vergleich stellte

⁴⁷ Statistik Austria (2011b), Statistik Austria (2011b)

⁴⁶ Statistik Austria (2004b), Tabelle B13c

sich heraus, dass sich mit den Daten aus Tichler et al. (2009) ein höheres Einsparungspotential ergab. Um einer Potentialüberschätzung vorzubeugen, wurde daher mit den Daten aus Tabelle 2-11 weitergerechnet, obwohl diese aus dem Jahr 1997 stammen und somit etwas veraltet sind.

Wie nun in Tabelle 2-20 abgelesen werden kann, ergibt sich für die gesamte Region ein theoretisches Einsparungspotential von 9 GWh Wärme pro Jahr, wenn bei allen noch zu sanierenden Gebäuden der Bauperiode 1945 bis 1980 Fenster und Außentüren ausgetauscht werden. Die Auswirkungen für die restlichen Sanierungsmaßnahmen werden in den folgenden Kapiteln dargestellt. Wieviele Gebäude in die jeweilige Bauperiode entfallen, kann ebenfalls aus der Tabelle abgelesen werden.

Tabelle 2-20: Jährliches Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Region Strudengau bei Fenster- und Außentürentausch

Art des Wohnge-	ø Wohn- nutz-	ø Anzahl an Whg.	Anzahl der zu	Anzahl der zu	Anzahl der zu	ø HWB [kWh/m²		Tausch von Fenstern und Außentüren	
bäudes	fläche je Whg.	je Gebäu- de	sanie- renden Gebäu- de 1945- 1960	sanie- renden Gebäu- de 1961- 1980	sanieren den Gebäu- de gesamt	a]	HWB neu	Δ [kWh/a]	
1-2 Whg.	107,8	1,2	764	1993	2.757	199	176	8.330.074	
3-10 Whg.	72,0	5,0	42	66	108	126	112	569.514	
>10 Whg.	65,1	14,6	1	20	21	104	92	239.947	
Summe			807	2.079	2.886			9.139.535	

Quelle: eigene Berechnungen.

Ein Ziel der Energieregion Strudengau ist es, die derzeitige Sanierungsrate zu erhöhen, um eine Best-Practice-Region in puncto Althaussanierung zu werden. Daher wurden im nächsten Schritt verschiedene Szenarien angenommen, anhand derer die Einsparung für die Sanierungsmaßnahmen in drei Referenzjahren (2013, 2020, 2030) dargestellt werden kann. Für die Region Strudengau wurden die jährlichen Einsparungen zusätzlich noch kumuliert berechnet und wieder für die drei Referenzjahre (2013, 2020, 2030) ausgewiesen.

Die beiden Szenarien unterscheiden sich in der Sanierungsrate der Ein- bis Zweifamilienwohngebäude. In Szenario 1 wurde eine Rate von 2% angenommen. Diese stellt eine Verdoppelung zum Status quo dar. In Szenario 2 wurde mit einer jährlichen Sanierung von 3% gerechnet. Aufgrund der erhöhten Sanierungsrate in Szenario 2 kann davon ausgegangen werden, dass im Jahr 2030 sämtliche nicht vom Abriss betroffene Gebäude saniert sind.

Da bei Mehrfamiliengebäuden die Sanierungsraten, mit 1,85% bei Gebäuden mit 3 bis 10 Wohnungen und 2,91% bei Gebäuden mit mehr als 10 Wohnungen, bereits relativ hoch sind, wird für die weiteren Berechnungen eine einheitliche Rate von 3% ab dem Jahr 2014 angenommen. Davor wird davon ausgegangen, dass in jeder Gemeinde ein Mehrfamilienwohngebäude mit 3 bis 10 Wohnungen und ein Mehrfamilienwohngebäude mit mehr als 10 Wohnungen – falls vorhanden – saniert wird. Eine Verdopplung der Sanierungsrate würde das Einsparungspotential in beiden

Szenarien unrealistisch erhöhen und so zu einer Überschätzung führen. Eine Gesamtübersicht über die Sanierungsmaßnahmen ist in der Zusammenfassung (siehe Kapitel 2.3.7) zu finden.

Tabelle 2-21: Szenarien der Energieeinsparung Tausch von Fenster und Außentüren

	ø HWB Anzahl ⁴⁸ [kWh/a]		Δ bei δ bzw. nach 2013 bei	Σ 2013 [kWh]	kumuliert bis 2013 [kWh]	Σ 2020 [kWh]	kumuliert bis 2020 [kWh]	Σ 2030 [kWh]	kumuliert bis 2030 [kWh]	
Vor Sanie rung	Nach Sanie rung		MFG [kWh/a]		[KWII]		[KWII]			
					Szenario 1					
199	176	55,14	166.601	499.804	999.609	1.666.015	9.163.082	3.332.030	34.986.312	
126	112	18,00	14.302	94.129	94.129	194.240	494.575	337.257	2.282.283	
104	92	4,00	5.834	45.466	45.466	86.307	208.830	144.651	938.133	
Summe)		186.738	639.399	1.139.204	1.946.562	9.866.487	3.813.938	38.206.727	
					Szenario 2					
199	176	55,14	249.902	749.707	1.499.413	2.499.022	13.744.622	4.998.045	52.479.468	
126	112	18,00	14.302	94.129	94.129	194.240	494.575	337.257	2.282.283	
104	92	4,00	5.834	45.466	45.466	86.307	208.830	144.651	938.133	
Summe			270.038	889.301	1.639.008	2.779.570	14.448.027	5.479.953	55.699.883	

Quelle: eigene Berechnungen.

In Tabelle 2-21 sind zuerst die Ergebnisse für Ein- und Zweifamilienwohngebäude, danach für Mehrfamilienwohngebäude mit 3 bis 10 Wohnungen und dann für Mehrfamilienwohngebäude mit mehr als 10 Wohnungen aufgezeigt. Wie in Tabelle 2-21 dargestellt, können durch die Steigerung der Sanierungsrate um 2% bei Ein- und Zweifamilienwohngebäuden und einer 3%-igen Sanierungsrate bei Mehrfamilienwohngebäuden bis ins Jahr 2030 in der gesamten Klima- und Energie-Modellregion Strudengau 38 GWh Heizwärme eingespart werden. Ohne Berücksichtigung von Energiepreissteigerung, Inflation und Zinsrechnung ergibt sich eine Einsparung von 3 Mio. €, bei einem Energiepreis von 0,065 €/kWh und einem durchschnittlichen Heizungswirkungsgrad von 0.85. Die Auswirkung bei einer generellen Sanierungsrate von 3% sind dementsprechend höher und es müssten 55,7 GWh und somit 4,2 Mio. € weniger für Heizwärme aufgewendet werden Auch Szenarien zur zukünftigen Rohölpreisentwicklung und der damit verbundenen Steigerung der Gaspreise, wurden in diesem Berichtsabschnitt dargelegt. Die Untersuchungen der betrachteten Studie zeigten eine Stabilisierung des Rohölpreises auf einem Niveau von 35 bis 60 US\$, was jedoch nur durch die Umsetzung wesentlicher Maßnahmen erreichbar ist. Kommt es zu keinen Änderungen bei Angebot und Nachfrage, ist mit einem Anstieg des Preises in den kommenden Jahrzehnten zu rechnen. Unter diesen Aspekten wird die Wirtschaftlichkeit und Effektivität der einzelnen Sanierungsmaßnahmen immer realistischer.

⁴⁸ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

Anschließend wurden die CO₂-Vermeidungskosten ermittelt, um zu erheben wieviel eine durch die Sanierungsmaßnahme eingesparte Tonne CO₂ kostet. Für die Berechnung der Ein- und Zweifamilienwohngebäude wurden zunächst die Ergebnisse aus der Studie Tichler et al. (2010) verwendet, mithilfe derer das CO₂-Einsparungspotential für die gesamte Klima- und Energie-Modellregion Strudengau errechnet wurde. Für die Durchschnittsberechnung der CO₂-Vermeidungskosten von Treibhausgasemissionen der Ein- und Zweifamilienwohngebäude wurden nur die beiden Modellgebäude ohne Zubau verwendet. Folgende weitere Annahmen wurden getroffen:

- Lebensdauer der Sanierungsmaßnahme und Kreditlaufzeit werden auf 25 Jahre gesetzt.
- Analog zum Kalkulationszins wurde ein fixer Zinssatz von 5% über die gesamte Laufzeit angenommen.
- Die durchschnittlichen Energiekosten wurden mit 0,065 € bestimmt.⁴⁹

Somit ergab sich bei Durchführung der Maßnahme "Fenster- und Außentürentausch" ein Kapitaldienst von 1.107 € pro Jahr für Ein- und Zweifamilienwohngebäude. Für die in Anspruch genommenen 25%igen Annuitätenzuschüsse ergibt sich ein jährlicher Betrag in Höhe von 277 €. Durch den Tausch der Fenster- und Außentüren reduziert sich die Nutzenergiekennzahl um 25 kWhm²a. In Tabelle 2-22 werden die Ergebnisse dargestellt⁵0:

Tabelle 2-22: Kosten und CO₂-Emissionen vor und nach Austausch der Fenster- und Außentüren⁵¹

	Vor der Sanierungsmaßnahme	Nach der Sanierungsmaßnahme	Δ
Jährl. Energieverbrauchskosten	3.127 €	2.737 €	390 €
Jahresgesamtkosten ohne Wohnbauförderung	3.127 €	3.844 €	717 €
Jahresgesamtkosten mit Wohnbauförderung	3.127 €	3.567 €	440 €
Jährl. CO₂-Emissionen	9,95 t	8,71 t	1,24 t

Quelle: Tichler et al. (2010), eigene Darstellung.

Es handelt sich in diesem Fall um positive Vermeidungskosten, da die Maßnahme zwar ökologisch sinnvoll ist, sie jedoch nicht ökonomisch rentabel durchführbar ist. Daraus ergeben sich Vermeidungskosten von 578 €/t_{CO2e}, mit Wohnbauförderung in Höhe von 355 €/t_{CO2e}.

⁴⁹ Dazu wurden die Energiepreise verschiedener Heiztechnologien nach ihrem Anteil am Raumwärmemix gemittelt und ein durchschnittlicher Wirkungsgrad von 85% angenommen.

⁵⁰ Vgl. Tichler et al. (2010)

⁵¹ Die Jahresgesamtkosten nach der Durchführung der Sanierungsmaßnahme setzen sich aus den jährlichen Energieverbrauchskosten (2.737 €) und dem Kapitaldienst (1.107 €) zusammen. Bei Inanspruchnahme der Wohnbauförderung wird anschließend noch der Annuitätenzuschuss (277 €) abgezogen.

Durch die Verwendung der in der Studie Tichler et al. (2010) angeführten Ergebnisse, konnte das Einsparungspotential berechnet werden. Bei Durchführung dieser Sanierungsvariante in allen in den Szenarien vorgesehenen Bauten des Gebäudetyps Ein- und Zweifamilienwohngebäude ergibt sich somit im Jahr 2030 (in diesem Jahr sind alle Sanierungen abgeschlossen) eine Einsparung von $1.360\ t_{CO2}$ in Szenario 1 bzw. $2.050\ t_{CO2}$ in Szenario 2.

Für die Berechnung der gesamten CO₂-Vermeidungskosten und des Einsparungspotentials wurden folgende Annahmen für Mehrfamilienwohngebäude beider Größenklassen, mit 3 bis 10 Wohnungen und mehr als 10 Wohnungen, getroffen:

- Die Kosten für die Gesamtsanierung eines Mehrfamilienwohngebäudes (ab 3 Wohnungen) werden mit 210 €/m² angenommen.⁵²
- Die Gesamtsanierungskosten k\u00f6nnen prozentuell nach den Anteilen von Ein- und Zweifamilienwohngeb\u00e4uden auf die einzelnen Sanierungsma\u00dfnahmen "Tausch von Fenster und Au\u00dfent\u00fcren", "D\u00e4mmung der Keller- und obersten Gescho\u00dfecke" und "D\u00e4mmung der Au\u00dfenw\u00e4nde" aufgeteilt werden.
- Die für den 25%-Annuitätenzuschuss benötigten Vorgaben (zB Mindestdämmstärke, U-Werte, etc.) werden erreicht. Die Voraussetzungen für einen höheren Annuitätenzuschuss von 30% werden bei der Maßnahme "Dämmung der Außenwände" für beide Mehrfamilienwohngebäudetypen erreicht, bei den Maßnahmen "thermische Sanierung" und "Gesamtsanierung" wird ein 40%-Annuitätenzuschuss gewährt.
- Die CO₂-Einsparung wird für das Jahr 2030 berechnet, da hier die gesamten Sanierungen gemäß den beiden Szenarien fertig durchgeführt sein werden.

Tabelle 2-23: CO₂-Einsparungspotential der Region Strudengau bei "Tausch von Fenster und Außentüren"

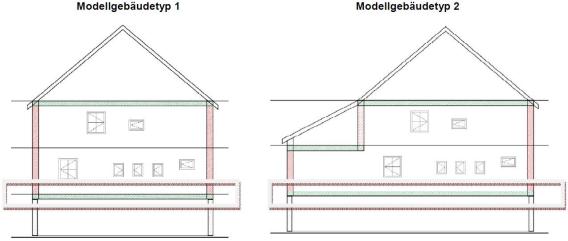
	Tausch von Fenster und Außentüren									
Gebäude	CO₂-Einsparung	CO ₂ -Vermeidungs	skosten [€/t _{CO2}]	CO ₂ -Einsparung gesamt [t _{CO2}]						
	je Gebäude [t _{CO2}]	Ohne Förderung	Mit Förderung	Szenario 1	Szenario 2					
1-2 Whg.	1,24	578	355	1.367	2.051					
3-10 Whg.	1,63	833	563	119	119					
>10 Whg.	3,54	1.060	733	53	53					
Summe				1.540	2.224					

Quelle: eigene Berechnungen.

In Tabelle 2-23 sind die gesamten Ergebnisse der einzelnen Gebäude nach Größenklasse sortiert dargestellt. Für Mehrfamilienwohngebäude mit 3 bis 10 Wohnungen wurde eine Einsparung von 1,63 $t_{\rm CO2}$ je Gebäude berechnet, wodurch sich eine Gesamteinsparung von 120 $t_{\rm CO2}$ für beide Szenarien ergibt. Bei Wohngebäuden mit mehr als 10 Wohnungen hingegen ergibt sich eine

⁵² Vergl. CO₂-Vermeidungskosten (2010)

Einsparung je Gebäude von 3,54 $t_{\rm CO2}$ und somit ein Gesamteinsparungspotential von 50 $t_{\rm CO2}$. Auch im Bereich Mehrfamilienwohngebäude kann diese Maßnahme unter den angewendeten Annahmen nicht ökonomisch sinnvoll durchgeführt werden. Obwohl die Einsparung bei Ein- und Zweifamiliengebäuden je Gebäude am geringsten ist, wird doch deutlich, dass durch die große Anzahl an diesen Bauten die höchste Gesamteinsparung erreicht werden kann. In Summe ergibt sich für alle Gebäudearten eine Einsparung von 1.540 $t_{\rm CO2}$ bzw. 2.220 $t_{\rm CO2}$.


2.3.2 Dämmung der Kellerdecke

Als zweite Sanierungsmaßnahme wurde die thermische Sanierung der Kellerdecke untersucht. In Abbildung 2-6 wird die Maßnahme grafisch für die beiden Modellgebäude 1 und 2 dargestellt.

Abbildung 2-6: Frontansicht der Modellgebäudetypen, Maßnahme "Dämmung der Kellerdecke"

Modellgebäudetyn 1

Modellgebäudetyn 2

Quelle: Kollmann (2009), S. 227.

Durch diese Sanierung können folgende U-Wertveränderungen erzielt werden:

Modellgebäude 1a und 2a: 0,267 (alt: 1,35)
 Modellgebäude 1b und 2b: 0,235 (alt: 0,80)

Als Dämmmaterial wurde expandierter Polystyrol-Partikelschaumstoff in den Berechnungen verwendet. Dieses Material wurde für die Studie herangezogen, da es das günstigste Dämmmaterial und das am häufigsten verwendete war.⁵³ Es wurden sowohl Materialkosten, als auch Arbeitskosten für die Anbringung eingerechnet. Durch die Einholung von Angeboten von drei oberösterreichischen Unternehmen wurden die Sanierungskosten ermittelt. Die Dämmung für alle vier Gebäudetypen beträgt exkl. MwSt. 5.000 € und inkl. MwSt. 6.000 €.

Für diesen Fall kann eine Förderung des Landes Oberösterreich in Form eines Annuitätenzuschusses von 25% beantragt werden, wenn für die gedämmte Kellerdecke ein U-Wert ≤ 0,35 W/m²K erreicht wird (siehe Kapitel 2.1.1.2.1). Auch hier muss für eine Inanspruchnahme der Förderung die Sanierung durch einen Kredit finanziert werden. Für die weitere Berechnung der

⁵³ Vgl. Kollmann (2009)

Darlehenskosten wurden die selben Annahmen getroffen wie für die Maßnahme "Fenster- und Außentürentausch" (Kapitel 2.3.1). Die Ergebnisse sind in Tabelle 2-16 dargestellt.

Tabelle 2-24: Darlehenskosten für die Finanzierung der Maßnahme "Dämmung der Kellerdecke"

	Ex	Exkl. MwSt [€]			Inkl. MwSt [€]			
	IST	+ 10%	- 10%	IST	+ 10%	- 10%		
Darlehen	5.000	5.500	4.500	6.000	6.600	5.400		
DR ohne Zuschuss jährlich	504	554	453	605	665	544		
DR ohne Zuschuss über Laufzeit	7.557	8.313	6.801	9.068	9.975	8.161		
DR mit Zuschuss jährlich	378	416	340	453	499	408		
DR mit Zuschuss über Laufzeit	5.668	6.234	5.101	6.801	7.481	6.121		
Reduktion der DR durch Zuschuss jährlich	126	139	113	151	166	136		
Reduktion der DR durch Zuschuss über Laufzeit	1.889	2.078	1.700	2.267	2.494	2.040		

Quelle: Kollmann (2009), eigene Darstellung. Anmerkung: DR = Darlehensrückzahlung = Tilgung.

Auch hier zeigt sich der wesentliche Einfluss des Zuschusses auf die Höhe der Darlehensrückzahlungen. Ohne Annuitätenzuschuss belaufen sich die jährlichen Kosten auf 450 € bis 670 €, wohingegen die bezuschussten Rückzahlungen zwischen 340 € und 500 € liegen. Durch die Maßnahme "Dämmung der Kellerdecke" ergaben sich folgende Nutzenergiekennzahlen und Energieeinsparungen für die 4 Modellgebäude, wie in Tabelle 2-25 dargestellt. ⁵⁴

Tabelle 2-25: Nutzenergiekennzahlen und Energieeinsparungen für die Maßnahme "Dämmung der Kellerdecke"

Modellgebäude	NEZ [kV	Vh/m²a]	Reduktion	Reduktion	
	Alt	Neu	[%]	[kWh]	
1a	216	181	16,2	7.574	
1b	185	167	9,7	3.935	
2a	220	181	17,7	9.839	
2b	186	166	10,8	5.107	

Quelle: Kollmann (2009), eigene Darstellung.

In weiterer Folge wurden eine jährliche Energieeinsparung von 8.700 kWh für Gebäude aus der Bauperiode 1945 bis 1960 durch die Sanierungsmaßnahme "Dämmung der Kellerdecke" auf Basis

-

⁵⁴ Vgl. Kollmann (2009)

der oben angegebenen Ergebisse angenommen. Auch die Einsparung von 4.500 kWh für Gebäude aus der Bauperiode 1961 bis 1980 wurde auf dieser Grundlage bestimmt. Für die beiden Modellgebäude mit Baujahr 1959 ergab sich so eine Einsparung in Höhe von 17% gegenüber dem IST-Stand und für die Gebäude aus dem Jahr 1970 von 10%. ⁵⁵

Um das Kosten/Nutzenverhältnis der Sanierungsmaßnahme zu bestimmen, wurden die Barwerte verschiedener Szenarien berechnet und in Tabelle 2-26 aufgelistet. Die den Szenarien zu Grunde liegenden Annahmen können Kapitel 2.3.1 entnommen werden. In der Tabelle wurden die unrentablen Varianten grau hinterlegt.

Tabelle 2-26: Barwert der Energieeinsparungen durch Dämmung der Kellerdecke, verschiedene Szenarien

Barwert der Energieeinsparungen bei	Modellgebä	ude BJ 1959	Modellgebäude BJ 1970		
[€]	15 Jahre Laufzeit	25 Jahre Laufzeit	15 Jahre Laufzeit	25 Jahre Laufzeit	
Diskontsatz 4%, Preis konstant	6.287	8.834	3.252	4.569	
Diskontsatz 6%, Preis konstant	5.492	7.229	2.841	3.739	
Diskontsatz 4%, Preis 4%	8.156	13.594	4.219	7.061	
Diskontsatz 6%, Preis 4%	7.027	10.712	3.635	5.541	
Diskontsatz 4%, Preis 6%	9.351	17.246	4.837	8.921	
Diskontsatz 6%, Preis 6%	8.002	13.337	4.139	6.899	

Quelle: Kollmann (2009), eigene Darstellung.

Die Tabelle illustriert wiederum den Einfluss von Preisentwicklung und Diskontsatz auf den Barwert der Einsparung. Es gilt dabei: je höher der Diskontsatz umso geringer der Barwert und je höher das Preiswachstum umso höher der Barwert der Einsparungen.

Tabelle 2-27: Kumulierte Kosten der Maßnahme "Dämmung der Kellerdecke" über die Kreditlaufzeit, mit und ohne Annuitätenzuschuss, mit und ohne MwSt.

	Ohne Annuitätenzuschuss	Mit Annuitätenzuschuss
Exkl. MwSt. IST-Kosten	7.557	5.668
Exkl. MwSt. + 10% Kosten	8.313	6.234
Exkl. MwSt. – 10% Kosten	6.801	5.101
Inkl. MwSt. IST-Kosten	9.068	6.801
Inkl. MwSt. + 10% Kosten	9.975	7.481

⁵⁵ Vgl. Kollmann (2009)

-

Inkl. MwSt. – 10% Kosten	8.161	6.121
--------------------------	-------	-------

Quelle: Kollmann (2009), eigene Darstellung.

Durch Gegenüberstellung der Ergebnisse aus Tabelle 2-26 und Tabelle 2-27 konnte eine Aussage über die Kosteneffizienz der Maßnahme getroffen werden. An dieser Stelle wird noch einmal darauf hingewiesen dass die unrentablen Szenarien in Tabelle 2-26 grau hinterlegt wurden. Aus den Tabellen kann daher abgelesen werden dass sich bei den Modellgebäuden aus dem Jahr 1959 eine Sanierung der Kellerdecke bei allen drei Preisentwicklungen und einem Diskontsatz von 4% oder 6% rentiert. Bei den Modellgebäuden aus dem Jahr 1970 ist dagegen eine Kellerdeckensanierung nur dann lukrativ, wenn die Laufzeit 25 Jahre beträgt und der Diskontsatz und die Preisentwicklung 4% oder 6% betragen.

Durch die selbstständige Durchführung der Maßnahme können grundsätzlich Kosten eingespart werden, jedoch ist die errechnete Energieeinsparung in diesem Fall nicht gewährleistet, da kein Professionist mit der Aufgabe beauftragt wurde.

Die Berechnung der Kosten für Mehrfamilienwohngebäude ist im vorherigen Kapitel beschrieben und wird im nächsten Kapitel zusammen mit den Kosten der Maßnahme "Dämmung der obersten Geschoßdecke" angeführt.

In weiterer Folge werden die Ergebnisse der möglichen Einsparungen der Energieregion Strudengau durch die Durchführung der Maßnahme "Dämmung der Kellerdecke" dargestellt. In Tabelle 2-28 wird ein jährliches Gesamteinsparungspotential von 9,5 Mio. kWh/a für die Region Strudengau ausgewiesen. Die einzelnen Berechnungsschritte werden in Kapitel 2.3.1 beschrieben.

Tabelle 2-28: Jährliches Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Region Strudengau bei Dämmung der Kellerdecke

Art des Wohnge-	ø Wohn- nutz-	ø Anzahl an Whg.	Anzahl der zu	Anzahl der zu	Anzahl der zu	ø HWB [kWh/m²		Dämmung der Kellerdecke	
bäudes	fläche je Whg.	je Gebäu- de	sanie- renden Gebäu- de 1945- 1960	sanie- renden Gebäu- de 1961- 1980	sanieren den Gebäu- de gesamt	a]	HWB neu	Δ [kWh/a]	
1-2 Whg.	107,8	1,2	764	1993	2.757	199	175	8.648.638	
3-10 Whg.	72,0	5,0	42	66	108	126	110	630.042	
>10 Whg.	65,1	14,6	1	20	21	104	94	215.604	
Summe			807	2.079	2.886			9.494.284	

Quelle: eigene Berechnungen.

Um eine realitätsnahe Einsparung darstellen zu können, werden wiederum zwei verschiedene Szenarien angenommen. Zum Einen wird für Ein- und Zweifamilienwohngebäude eine Sanierungsrate von 2%, zum Anderen eine Sanierungsrate von 3% angenommen. In beiden Fällen wird mit einer jährlichen Sanierung von 3% für Mehrfamilienwohngebäude ab dem Jahr 2014

gerechnet. Weiters wird davon ausgegangen, dass zwischen 2011 und 2013 jeweils ein Mehrfamiliengebäude mit 3 bis 10 Wohnungen und eines mit mehr als 10 Wohnungen – falls vorhanden – je Gemeinde saniert wird.

Tabelle 2-29: Szenarien der Energieeinsparung bei Dämmung der Kellerdecke

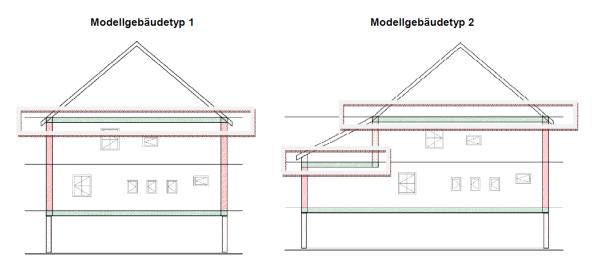
ø H [kW Vor Sanie rung		Anzahl ⁵⁶	Δ bei δ bzw. nach 2013 bei MFG [kWh/a]	Σ 2013 [kWh]	kumuliert bis 2013 [kWh]	Σ 2020 [kWh]	kumuliert bis 2020 [kWh]	Σ 2030 [kWh]	kumuliert bis 2030 [kWh]
					Szenario 1				
199	175	55,14	173.077	519.231	1.038.462	1.730.770	9.519.237	3.461.541	36.346.179
126	110	18,00	16.161	100.769	100.769	213.900	553.290	375.514	2.573.472
104	94	4,00	5.270	39.946	39.946	76.837	187.509	129.538	846.276
Summe	;		194.509	659.946	1.179.177	2.021.507	10.260.037	3.966.593	39.765.927
					Szenario 2				
199	175	55,14	259.616	778.847	1.557.693	2.596.156	14.278.856	5.192.311	54.519.269
126	110	18,00	16.161	100.769	100.769	213.900	553.290	375.514	2.573.472
104	94	4,00	5.270	39.946	39.946	76.837	187.509	129.538	846.276
Summe)		281.047	919.562	1.698.408	2.886.892	15.019.656	5.697.363	57.939.017

Quelle: eigene Berechnungen.

In Tabelle 2-29 sind zuerst die Ergebnisse für Ein- und Zweifamilienwohngebäude, danach für Mehrfamilienwohngebäude mit 3 bis 10 Wohnungen und dann für Mehrfamilienwohngebäude mit mehr als 10 Wohnungen aufgezeigt. Wird die Sanierung der Kellerdecke, wie in den Szenarien angenommen, durchgeführt, können im ersten Fall jährlich 195.000 kWh und in Szenario 2 280.000 kWh eingespart werden. Bis ins Jahr 2030 können so insgesamt laut Szenario 1 39,7 GWh bzw. laut Szenario 2 57,9 GWh Heizwärmeenergie eingespart werden. Wie auch für die Sanierungsmaßnahme "Tausch der Fenster und Außentüren" wird kurz die wertmäßige Einsparung überschlagen.⁵⁷ Daraus ergibt ergeben sich 3 Mio. € aus Szenario 1 und aus Szenario 2 in Höhe von 4,3 Mio. €.

Die CO₂-Vermeidungskosten für die Maßnahme "Dämmung der Kellerdecke" werden zusammen mit der Maßnahme" Dämmung der Geschoßdecke" betrachtet (siehe Kapitel 2.3.3).

67


⁵⁶ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der jährlich zu sanierenden Mehrfamiliengebäude bis inkl. 2013

⁵⁷ Ohne Berücksichtigung von Energiepreissteigerung, Inflation und Zinsrechnung.

2.3.3 Dämmung der Geschoßdecke

Im nächsten Schritt wird die Dämmung der obersten Geschoßdecke analysiert. Die Maßnahme wird in Abbildung 2-7 dargestellt. Bei Modelltyp 1 wurde für die Sanierung der obersten Geschoßdecke mit einer Fläche von 99,32m² und für Modelltyp 2 mit einer Fläche von 131,25m² gerechnet.

Abbildung 2-7: 2D-Frontansicht der Modellgebäudetypen, Maßnahme "Dämmung der obersten Geschoßdecke"

Quelle: Kollmann (2009), S. 227.

Durch diese Sanierung können folgende U-Wertveränderungen erziehlt werden⁵⁸:

Modellgeäbude 1a und 2a: 0,141 (alt: 0,55)
 Modellgebäude 1b und 2b: 0,147 (alt: 0,65)

Betrachtet man die U-Werte der Gebäude vor Sanierung fällt auf, dass der U-Wert der Gebäude aus dem Jahr 1959 besser sind als die späteren Bauten. Dies ist darauf zurückzuführen, dass in Gebäuden der 1950er und 1960er Jahren Dippelbaumdecken errichtet wurden, welche besser dämmen, als die in den Jahrzehnten danach gebauten Hohlkörperdecken aus Heraklit.

Auch bei dieser Maßnahme wurde für die Sanierung, aufgrund der geringen Kosten und der derzeitigen Anwendungshäufigkeit, expandierter Polystyrol-Partikelschaumstoff verwendet. Die Dämmstärke zur Erreichung der Mindestdämmwerte beträgt bei allen Gebäudetypen 20 cm. Es wurden wiederum Angebote von drei oberösterreichischen Unternehmern eingeholt und der Durchschnitt ermittelt. Es haben sich für die Maßnahme "Dämmung der obersten Geschoßdecke" Kosten für beide Modellhäuser von 7.000 € (6.400 € exkl. MwSt.) ergeben.

Das förderbare Kreditvolumen (Voraussetzung für die Inanspruchnahme der Förderung) beträgt derzeit 37.000 €. Es wird ein Annuitätenzuschuss von 25% gewährt, wenn ein U-Wert ≤ 0,15 W/m²K für die Sanierung der obersten Geschoßdecke erreicht wird.

Es wurde davon ausgegangen, dass für die Förderungen alle Voraussetzungen erfüllt wurden und die Laufzeit des aufgenommenen Darlehens 15 Jahre mit einer fixen Verzinsung von 6% beträgt.

-

⁵⁸ Vgl. Kollmann (2009)

Zur Vorbeugung eventueller Veränderungen, wurden die Kosten mit ± 10% variiert und exklusive und inklusive Mehrwertsteuer ausgewiesen. Die Ergebnisse werden in Tabelle 2-30 dargestellt. ⁵⁹

Tabelle 2-30: Darlehenskosten für die Finanzierung der Maßnahme "Dämmung der obersten Geschoßdecke"

	Exkl. MwSt [€]			Inkl. MwSt [€]		
	IST	+ 10%	- 10%	IST	+ 10%	- 10%
Darlehen	6.380	7.018	5.742	7.656	8.422	6.890
DR ohne Zuschuss jährlich	643	707	579	771	849	694
DR ohne Zuschuss über Laufzeit	9.643	10.607	8.678	11.571	12.728	10.414
DR mit Zuschuss jährlich	482	530	434	579	636	521
DR mit Zuschuss über Laufzeit	7.232	7.955	6.509	8.678	9.546	7.811
Reduktion der DR durch Zuschuss jährlich	161	177	145	193	212	174
Reduktion der DR durch Zuschuss über Laufzeit	2.411	2.652	2.170	2.893	3.182	2.604

Quelle: Kollmann (2009), eigene Darstellung. Anmerkung: DR = Darlehensrückzahlung = Tilgung.

Auch hier zeigt sich der wesentliche Einfluss des Zuschusses auf die Höhe der Darlehensrückzahlungen. Ohne Annuitätenzuschuss belaufen sich die jährlichen Kosten auf 580 € bis 850 €, wohingegen die bezuschussten Rückzahlungen zwischen 435 € und 640 € liegen⁶⁰. Durch die Maßnahme "Dämmung der obersten Geschoßdecke" ergaben sich folgende Nutzenergiekennzahlen und Energieeinsparungen für die 4 Modellgebäude:

Tabelle 2-31: Nutzenergiekennzahlen und Energieeinsparungen für die Maßnahme "Dämmung der obersten Geschoßdecke"

Modellgebäude	NEZ [kV	Wh/m²a]	Reduktion	Reduktion	
	Alt Neu		[%]	[kWh]	
1a	216	199	7,8	3.681	
1b	185	165	10,8	4.501	
2a	220	200	9,0	4.882	
2b	186	163	12,3	5.961	

Quelle: Kollmann (2009), eigene Darstellung.

⁵⁹ Vgl. Kollmann (2009)

⁶⁰ Vgl. Kollmann (2009)

Außenwände" bei einem Einfamilienhaus aus der Bauperiode 1945 bis 1960 eine durchschnittliche Energieeinsparung von 4.200 kWh pro Jahr angenommen. Bei Einfamilienwohngebäuden aus der Bauperiode 1961 bis 1980 wurde von einer jährlichen Energieeinsparung von 5.200 kWh ausgegangen. Für die Modellgebäude aus dem Jahr 1959 bedeutete dies eine Einsparung von ungefähr 8% gegenüber dem Ausgangszustand. Bei den Modellgebäuden von 1970 führte die Maßnahme zu einer Reduktion von ca. 12%.

Um das Kosten/Nutzenverhältnis der Sanierungsmaßnahme zu bestimmen, wurden wiederum die Barwerte verschiedener Szenarien berechnet und in Tabelle 2-32 aufgelistet. Die den Szenarien zu Grunde liegenden Annahmen können in Kapitel 2.3.1 nachgelesen werden. In der Tabelle wurden die unrentablen Varianten grau hinterlegt.

Tabelle 2-32: Barwert der Energieeinsparungen durch Dämmung der obersten Geschoßdecke, verschiedene Szenarien

Barwert der Energieeinsparungen bei	Modellgebä	ude BJ 1959	Modellgebäude BJ 1970		
[€]	15 Jahre Laufzeit	25 Jahre Laufzeit	15 Jahre Laufzeit	25 Jahre Laufzeit	
Diskontsatz 4%, Preis konstant	3.035	4.265	3.758	5.280	
Diskontsatz 6%, Preis konstant	2.651	3.490	3.283	4.321	
Diskontsatz 4%, Preis 4%	3.938	6.563	4.875	8.125	
Diskontsatz 6%, Preis 4%	3.392	5.171	4.200	6.403	
Diskontsatz 4%, Preis 6%	4.514	8.326	5.589	10.308	
Diskontsatz 6%, Preis 6%	3.863	6.439	4.783	7.972	

Quelle: Kollmann (2009), eigene Darstellung.

Die Tabelle illustriert wiederum den Einfluss von Preisentwicklung und Diskontsatz auf den Barwert der Einsparung. Es gilt dabei: je höher der Diskontsatz umso geringer der Barwert und je höher das Preiswachstum umso höher der Barwert der Einsparungen.

Tabelle 2-33: Kumulierte Kosten der Maßnahme "Dämmung der obersten Geschoßdecke" über die Kreditlaufzeit, mit und ohne Annuitätenzuschuss, mit und ohne MwSt.

	Ohne Annuitätenzuschuss	Mit Annuitätenzuschuss	
Exkl. MwSt. IST-Kosten	9.643	7.232	
Exkl. MwSt. + 10% Kosten	10.607	7.955	
Exkl. MwSt. – 10% Kosten	8.678	6.509	

⁶¹ Vgl. Kollmann (2009)

-

Inkl. MwSt. IST-Kosten	11.571	8.678
Inkl. MwSt. + 10% Kosten	12.728	9.546
Inkl. MwSt. – 10% Kosten	10.414	7.811

Quelle: Kollmann (2009), eigene Darstellung.

Durch Gegenüberstellung der Ergebnisse aus Tabelle 2-32 und Tabelle 2-33 konnte eine Aussage über die Kosteneffizienz der Maßnahme getroffen werden. An dieser Stelle wird noch einmal darauf hingewiesen dass die unrentablen Szenarien in Tabelle 2-32 grau hinterlegt wurden. Es ist klar ersichtlich, dass sich die Maßnahme bei keinem Szenario rentabel über die Kreditlaufzeit von 15 Jahren realisieren lässt. Auch über eine Laufzeit von 25 Jahren würde eine Realisierung nur mit einem Diskontsatz von 4% und einer Preissteigerung von 4 od. 6% lukrativ sein. Für die Modellgebäude mit Baujahr 1970 ergab sich noch eine zusätzliche profitable Lösung mit einem Diskontzinssatz und einer Preissteigerung von 6%.

Grundsätzlich kann die Maßnahme auch ohne Professionisten selbständig durchgeführt werden. Ob die Kosteneffizienz dann gegeben ist, kann an dieser Stelle nicht beurteilt werden. Sicher ist, dass die Rentabilität aber tendenziell eher gegeben sein wird.

Die Berechnung der Kosten für Mehrfamilienwohngebäude ist im Kapitel 2.3.1 beschrieben. Es ergeben sich für die Durchführung der Maßnahmen "Dämmung der Kellerdecke" und "Dämmung der obersten Geschoßdecke" folgende Kosten für Mehrfamilienwohngebäude:

mit 3 bis 10 Wohnungen: 20.750 €

mit mehr als 10 Wohnungen: 54.420 €

Äquivalent zu den vorangegangenen Sanierungsmaßnahmen wurde das gesamte Potential der Maßnahme "Dämmung der obersten Geschoßdecke" berechnet und in Tabelle 2-34 dargestellt. Durch die Durchführung dieser Sanierungen könnten theoretisch jährlich 8,6 GWh eingespart werden.

Tabelle 2-34: Jährliches Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Region Strudengau bei Dämmung der obersten Geschoßdecke

Art des Wohnge-	ø Wohn- nutz-	ø Anzahl an Whg.	Anzahl der zu	Anzahl der zu	Anzahl der zu	ø HWB [kWh/m²	Dämmung der Geschoßdecke	
bäudes	fläche je Whg.	je Gebäu- de	sanie- renden Gebäu- de 1945- 1960	sanie- renden Gebäu- de 1961- 1980	sanieren den Gebäu- de gesamt	_ a]	HWB neu	Δ [kWh/a]
1-2 Whg.	107,8	1,2	764	1993	2.757	199	177	7.889.340
3-10 Whg.	72,0	5,0	42	66	108	126	113	517.239
>10 Whg.	65,1	14,6	1	20	21	104	92	246.405
Summe			807	2.079	2.886			8.652.985

Quelle: eigene Berechnungen.

In Tabelle 2-35 sind zuerst die Ergebnisse für Ein- und Zweifamilienwohngebäude, danach für Mehrfamilienwohngebäude mit 3 bis 10 Wohnungen und dann für Mehrfamilienwohngebäude mit mehr als 10 Wohnungen aufgezeigt. Wird die oberste Geschoßdecke in den Gebäuden anhand der in Kapitel 2.3.1 entwickelten Szenarien saniert, können in Szenario 1 jährlich 176.000 kWh und somit bis ins Jahr 2030 36 GWh gespart werden. Diese Summe enspricht bei Außerachtlassen von Energiepreissteigerungen, Zinsrechnung und Inflation, sowie eine Annahme eines durchschnittlichen Heizungswirkungsgrades von 85% und einem Heizwärmepreis von 0,065 € eingesparten Energiekosten von 2,7 Mio. €. Aus Szenario 2 ergeben sich Einsparungen von jährlich 255.000 kWh, gesamt bis 2030 in Höhe von 52,7 GWh, die 4 Mio € Kostenreduktion entsprechen.

Tabelle 2-35: Szenarien der Energieeinsparung bei Dämmung der Geschoßdecke

ø H [kW Vor Sanie		Anzahl 62	Δ bei δ bzw. nach 2013 bei MFG	Σ 2013 [kWh]	kumuliert bis 2013 [kWh]	Σ 2020 [kWh]	kumuliert bis 2020 [kWh]	Σ 2030 [kWh]	kumuliert bis 2030 [kWh]
rung	rung		[kWh/a]						
	Szenario 1								
199	177	55,14	157.727	473.182	946.363	1.577.272	8.674.996	3.154.544	33.122.713
126	113	18,00	12.795	87.411	87.411	176.974	445.664	304.922	2.045.010
104	92	4,00	5.976	47.209	47.209	89.039	214.528	148.795	961.487
Summe	;		176.498	607.801	1.080.983	1.843.284	9.335.188	3.608.261	36.129.211
					Szenario 2				
199	177	55,14	236.591	709.772	1.419.545	2.365.908	13.012.494	4.731.816	49.684.070
126	113	18,00	12.795	87.411	87.411	176.974	445.664	304.922	2.045.010
104	92	4,00	5.976	47.209	47.209	89.039	214.528	148.795	961.487
Summe	;		255.361	844.392	1.554.164	2.631.921	13.672.686	5.185.533	52.690.568

Quelle: eigene Berechnungen.

Die Vermeidungskosten für CO₂-Emissionen für die beiden Maßnahmen "Thermische Sanierung der Kellerdecke" und "Thermische Sanierung der obersten Geschoßdecke" wurden zusammen berechnet. Für die Berechnungen wurde wieder der Durchschnitt der Ergebnisse der Modellgebäude 1a und 2a gebildet. Die Annahmen sind äquivalent zu jenen im vorangegangenen Berechnungsfall (siehe Kapitel 2.3.1).

Durch die Durchführung der beiden Maßnahmen kann eine Reduktion von 45 kWh/m²a erreicht werden. Die Kosten für die Umsetzung belaufen sich im Falle der thermischen Sanierung der Kellerdecke auf 6.000 € und für die thermische Sanierung der obersten Geschoßdecke müssen 7.000 € aufgewendet werden. Als Auflage für die Inanspruchnahme des 25%-igen Annuitätenzuschusses muss die Summe kreditfinanziert sein, woraus sich ein jährlicher

⁶² Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

Kapitaldienst von 922 € ergibt. Der Annuitätenzuschuss beläuft sich jährlich auf 231 €. Die Ergebnisse werden in Tabelle 2-36 aufgelistet.⁶³

Tabelle 2-36: Kosten und CO₂-Emissionen vor und nach Dämmung der Keller- und obersten Geschoßdecke⁶⁴

	Vor der Sanierungsmaßnahme	Nach der Sanierungsmaßnahme	Δ
Jährl. Energieverbrauchskosten	3.127 €	2.425€	702 €
Jahresgesamtkosten ohne Wohnbauförderung	3.127 €	3.348 €	221 €
Jahresgesamtkosten mit Wohnbauförderung	3.127 €	3.117€	-10€
Jährl. CO ₂ -Emissionen	9,95 t	7,72 t	2,23 t

Quelle: Tichler et al. (2010), eigene Darstellung.

Bei Inanspruchnahme der Wohnbauförderung handelt es sich in diesem Fall um negative Vermeidungskosten, da die Maßnahme sowohl ökologisch sinnvoll, als auch ökonomisch rentabel durchführbar ist. Die Vermeidungskosten betragen -4 €/t_{CO2e}. Wird der Annuitätenzuschuss nicht in Anspruch genommen betragen die CO₂-Vermeidungskosten jedoch 99 €/t_{CO2e} und sind damit positiv einzustufen.

Durch die Verwendung der in der Studie Tichler et al. (2010) angeführten Ergebnisse, konnte das Einsparungspotential berechnet werden. Bei Durchführung dieser Sanierungsvariante in allen in den Szenarien vorgesehenen Bauten des Gebäudetyps Ein- und Zweifamilienwohngebäude ergibt sich somit im Jahr 2030 (in diesem Jahr sind alle Sanierungen abgeschlossen) eine Einsparung von 2.450 $t_{\rm CO2}$ in Szenario 1 bzw. 3.680 $t_{\rm CO2}$ in Szenario 2. Für die Berechnung der gesamten $\rm CO_2$ -Vermeidungskosten und des Einsparungspotentials wurden Annahmen für Mehrfamilienwohngebäude beider Größenklassen, mit 3 bis 10 Wohnungen und mehr als 10 Wohnungen, getroffen, welche in Kapitel 2.3.1 nachgelesen werden können.

⁶³ Vgl. Tichler et al. (2010)

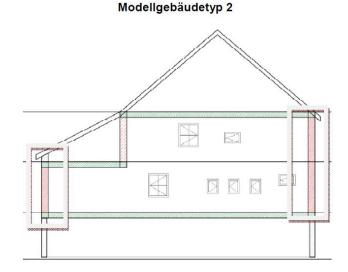
⁶⁴ Die Jahresgesamtkosten nach der Durchführung der Sanierungsmaßnahme setzen sich aus den jährlichen Energieverbrauchskosten und dem Kapitaldienst zusammen. Bei Inanspruchnahme der Wohnbauförderung wird anschließend noch der Annuitätenzuschuss abgezogen.

Tabelle 2-37: CO₂-Einsparungspotential der Region Strudengau bei Dämmung der Keller- und obersten Geschoßdecke

	Dämmung der Keller- und obersten Geschoßdecke								
Gebäude	CO₂-Einsparung	CO ₂ -Vermeidungs	skosten [€/t _{co2}]	CO ₂ -Einsparung gesamt [t _{CO2}]					
	je Gebäude [t _{CO2}]	Ohne Förderung	Mit Förderung	Szenario 1	Szenario 2				
1-2 Whg.	2,23	99	-4	2.459	3.688				
3-10 Whg.	3,29	200	89	240	240				
>10 Whg.	6,82	319	178	102	102				
Summe				2.802	4.032				

Quelle: eigene Berechnungen.

In Tabelle 2-37 sind die gesamten Ergebnisse der einzelnen Gebäude nach Größenklasse sortiert dargestellt. Für Mehrfamilienwohngebäude mit 3 bis 10 Wohnungen wurde eine Einsparung von 3,26 $t_{\rm CO2}$ je Gebäude berechnet, wodurch sich eine Gesamteinsparung von 240 $t_{\rm CO2}$ für beide Szenarien ergibt. Bei Wohngebäuden mit mehr als 10 Wohnungen hingegen ergibt sich eine Einsparung je Gebäude von 6,82 $t_{\rm CO2}$ und somit ein Gesamteinsparungspotential von 100 $t_{\rm CO2}$. Im Bereich Mehrfamilienwohngebäude kann diese Maßnahme unter den angewendeten Annahmen nicht ökonomisch sinnvoll durchgeführt werden. Obwohl die Einsparung bei Ein- und Zweifamiliengebäuden je Gebäude am geringsten ist, wird doch deutlich, dass durch die große Anzahl an diesen Bauten die höchste Gesamteinsparung erreicht werden kann. In Summe ergibt sich für alle Gebäudearten eine Einsparung von 2.800 $t_{\rm CO2}$ bzw. 4.000 $t_{\rm CO2}$.


2.3.4 Dämmung der Außenwände

In Abbildung 2-8 wird die thermische Sanierung der Außenwände dargestellt. Die zu dämmende Fläche der Außenwände beträgt bei Modelltyp 1 212,65m² und bei Modellgebäude 2 220,52m².

74

Abbildung 2-8: 2D-Frontansicht der Modellgebäude, Maßnahme "Dämmung der Außenwände"

Modellgebäudetyp 1

Quelle: Kollmann (2009), S. 233.

Durch diese Sanierung können folgende U-Wertveränderungen erziehlt werden⁶⁵:

Modellgeäbude 1a und 2a: 0,220 (alt: 1,166)
 Modellgebäude 1b und 2b: 0,213 (alt: 1,005)

Es wurden wiederum drei Angebote von oberösterreichischen Firmen für die durchschnittliche Kostenberechnung verwendet. Um den minimalen für die Förderung zulässigen U-Wert in Höhe von 0,2 W/m²K zu erreichen, waren für die Modellgebäude aus dem Jahr 1959 ein Dämmstärke von 14 cm und für die Gebäude mit dem Baujahr 1970 von 12 cm notwendig. Daraus ergaben sich Sanierungskosten für die Modellgebäude mit einem Baujahr von 1959 von 19.200 € (16.000 € exkl. MwSt.) und für die Gebäude aus dem Jahr 1970 von 18.360 € (15.300 € exkl. MwSt.).

Das förderbare Kreditvolumen (Voraussetzung für die Inanspruchnahme der Förderung) beträgt derzeit 37.000 €. Es wird ein Annuitätenzuschuss von 25% gewährt, wenn ein U-Wert ≤ 0,25 W/m²K für die thermische Sanierung der Außenwände erreicht wird.⁶⁷

Es wurde davon ausgegangen, dass für die Förderungen alle Voraussetzungen erfüllt wurden und die Laufzeit des aufgenommenen Darlehens 15 Jahre mit einer fixen Verzinsung von 6% beträgt. Zur Vorbeugung eventueller Veränderungen, wurden die Kosten mit \pm 10% variiert und exklusive und inklusive Mehrwertsteuer ausgewiesen. Die Ergebnisse werden in Tabelle 2-38 für die Modellgebäude des Jahres 1959 und in Tabelle 2-39 für die Modellgebäude aus dem Jahr 1970 dargestellt. 68

66 Vgl. Kollmann (2009)

⁶⁵ Vgl. Kollmann (2009)

⁶⁷ Vgl. Kollmann (2009)

⁶⁸ Vgl. Kollmann (2009)

Tabelle 2-38: Darlehenskosten für die Finanzierung der Maßnahme "Dämmung der Außenwände" der Modellgebäude BJ 1959

	Ex	Exkl. MwSt [€]			Inkl. MwSt [€]		
	IST	+ 10%	- 10%	IST	+ 10%	- 10%	
Darlehen	16.000	17.600	14.400	19.200	21.120	17.280	
DR ohne Zuschuss jährlich	1.612	1.773	1.451	1.935	2.128	1.741	
DR ohne Zuschuss über Laufzeit	24.182	26.600	21.764	29.019	31.920	26.117	
DR mit Zuschuss jährlich	1.209	1.330	1.088	1.451	1.596	1.306	
DR mit Zuschuss über Laufzeit	18.137	19.950	16.323	21.764	23.940	19.588	
Reduktion der DR durch Zuschuss jährlich	403	443	363	484	532	435	
Reduktion der DR durch Zuschuss über Laufzeit	6.046	6.650	5.441	7.255	7.980	6.529	

Quelle: Kollmann (2009), eigene Darstellung. Anmerkung: DR = Darlehensrückzahlung = Tilgung.

So ergibt sich im Falle der Modellgebäude aus dem Jahr 1959 eine jährliche Rückzahlung von 1.450 € bis ca. 2.000 €. Durch den Zuschuss senken sich die Kosten pro Jahr auf 1.080 € bis 1.600 €.69

Tabelle 2-39: Darlehenskosten für die Finanzierung der Maßnahme "Dämmung der Außenwände" der Modellgebäude BJ 1970

	Exkl. MwSt [€]			Inkl. MwSt [€]		
	IST	+ 10%	- 10%	IST	+ 10%	- 10%
Darlehen	15.300	16.830	13.770	18.360	20.196	16.524
DR ohne Zuschuss jährlich	1.542	1.696	1.387	1.850	2.035	1.665
DR ohne Zuschuss über Laufzeit	23.124	25.437	20.812	27.749	30.524	24.974
DR mit Zuschuss jährlich	1.156	1.272	1.041	1.387	1.526	1.249
DR mit Zuschuss über Laufzeit	17.343	19.077	15.609	20.812	22.893	18.731
Reduktion der DR durch Zuschuss jährlich	385	424	347	462	509	416
Reduktion der DR durch Zuschuss über Laufzeit	5.781	6.359	5.203	6.937	7.631	6.244

Quelle: Kollmann (2009), eigene Darstellung. Anmerkung: DR = Darlehensrückzahlung = Tilgung.

⁶⁹ Vgl. Kollmann (2009)

Die jährliche Belastung für die Modellgebäude mit Baujahr 1970 betragen ohne Zuschuss 1.390 € bis 1.850 € und mit Annuitätenzuschuss 1.040 € bis 1.500 €.⁷⁰

Durch die Maßnahme "Dämmung der Außenwände" ergaben sich folgende Nutzenergiekennzahlen und Energieeinsparungen für die 4 Modellgebäude:

Tabelle 2-40: Nutzenergiekennzahlen und Energieeinsparungen für die Maßnahme "Dämmung der Außenwände"

Modellgebäude	NEZ [kV	Wh/m²a]	Reduktion	Reduktion	
	Alt Neu [%]		[%]	[kWh]	
1a	216	115	46,8	22.053	
1b	185	101	45,4	18.330	
2a	220	121	45,0	24.967	
2b	186	105	43,6	20.404	

Quelle: Kollmann (2009), eigene Darstellung.

Außenwände" bei einem Einfamilienhaus aus der Bauperiode 1945 bis 1960 eine durchschnittliche Energieeinsparung von 23.500 kWh pro Jahr angenommen. Bei Einfamilienwohngebäuden aus der Bauperiode 1961 bis 1980 wurde von einer jährlichen Energieeinsparung von 19.300 kWh ausgegangen. Für die Modellgebäude aus dem Jahr 1959 bedeutete dies eine Einsparung von ungefähr 46% gegenüber dem Ausgangszustand. Bei den Modellgebäuden von 1970 führte die Maßnahme zu einer Reduktion von ca. 44%.⁷¹

Um das Kosten/Nutzenverhältnis der Sanierungsmaßnahme zu bestimmen, wurden wiederum die Barwerte verschiedener Szenarien berechnet und in Tabelle 2-41 aufgelistet. Die den Szenarien zu Grunde liegenden Annahmen können in Kapitel 2.3.1 nachgelesen werden. In der Tabelle wurden die unrentablen Varianten grau hinterlegt.

⁷¹ Vgl. Kollmann (2009)

⁷⁰ Vgl. Kollmann (2009)

Tabelle 2-41: Barwert der Energieeinsparungen durch Dämmung der Außenwände, verschiedene Szenarien

Barwert der Energieeinsparungen bei	Modellgebä	ude BJ 1959	Modellgebäude BJ 1970		
[€]	15 Jahre Laufzeit	25 Jahre Laufzeit	15 Jahre Laufzeit	25 Jahre Laufzeit	
Diskontsatz 4%, Preis konstant	16.983	23.863	13.948	19.598	
Diskontsatz 6%, Preis konstant	14.835	19.527	12.184	16.037	
Diskontsatz 4%, Preis 4%	22.031	36.719	18.094	30.156	
Diskontsatz 6%, Preis 4%	18.981	28.936	15.589	23.764	
Diskontsatz 4%, Preis 6%	25.259	46.585	20.745	38.259	
Diskontsatz 6%, Preis 6%	21.616	36.026	17.752	29.587	

Quelle: Kollmann (2009), eigene Darstellung.

Die Tabelle illustriert wiederum den Einfluss von Preisentwicklung und Diskontsatz auf den Barwert der Einsparung. Es gilt dabei: je höher der Diskontsatz umso geringer der Barwert und je höher das Preiswachstum umso höher der Barwert der Einsparungen.

Tabelle 2-42: Kumulierte Kosten der Maßnahme "Dämmung der Außenwände" über die Kreditlaufzeit, mit und ohne Annuitätenzuschuss, mit und ohne MwSt. der Modellgebäude BJ 1959

	Ohne Annuitätenzuschuss	Mit Annuitätenzuschuss
Exkl. MwSt. IST-Kosten	24.182	18.137
Exkl. MwSt. + 10% Kosten	26.600	19.950
Exkl. MwSt. – 10% Kosten	21.764	16.323
Inkl. MwSt. IST-Kosten	29.019	21.764
Inkl. MwSt. + 10% Kosten	31.920	23.940
Inkl. MwSt. – 10% Kosten	26.117	19.588

Quelle: Kollmann (2009), eigene Darstellung.

Tabelle 2-43: Kumulierte Kosten der Maßnahme "Dämmung der Außenwände" über die Kreditlaufzeit, mit und ohne Annuitätenzuschuss, mit und ohne MwSt. der Modellgebäude BJ 1970

	Ohne Annuitätenzuschuss	Mit Annuitätenzuschuss
Exkl. MwSt. IST-Kosten	23.124	17.343
Exkl. MwSt. + 10% Kosten	25.437	19.077
Exkl. MwSt. – 10% Kosten	20.812	15.609
Inkl. MwSt. IST-Kosten	27.749	20.812
Inkl. MwSt. + 10% Kosten	30.524	22.893
Inkl. MwSt. – 10% Kosten	24.974	18.731

Quelle: Kollmann (2009), eigene Darstellung.

Durch Gegenüberstellung der Ergebnisse aus Tabelle 2-41, Tabelle 2-42 und Tabelle 2-43 konnte eine Aussage über die Kosteneffizienz der Maßnahme getroffen werden. An dieser Stelle wird noch einmal darauf hingewiesen, dass die unrentablen Szenarien in Tabelle 2-41 grau hinterlegt wurden. Es ist klar ersichtlich, dass die Maßnahme bei keinem Szenario rentabel ist, welche einen Diskontsatz von 20% in den Annahmen beinhalten. Auch im Szenario der Modellgebäude mit Baujahr 1959 bei konstantem Preis und einem Diskontsatz von 6% ist keine Kosteneffizienz gegeben. Bei den Modellgebäuden aus dem Jahr 1970 sind die Szenarien mit konstantem Preis und einem Diskontsatz von 4 oder 6% und bei einer Preissteigerung von 4% und einem Diskontsatz von 6% nicht lukrativ.⁷²

Diese Maßnahme ist die bislang erste, welche am ehesten kosteneffizient für Ein- und Zweifamilienwohngebäude umzusetzen ist, auch in dem Fall, wenn kein Annuitätenzuschuss gewährt werden würde.

Die Berechnung der Kosten für Mehrfamilienwohngebäude ist im Kapitel 2.3.1 beschrieben. Es ergeben sich für die Durchführung der Maßnahmen "Dämmung der Außenwände" folgende Kosten für Mehrfamilienwohngebäude:

mit 3 bis 10 Wohnungen: 30.370 €
 mit mehr als 10 Wohnungen: 80.430 €

In weiterer Folge werden die Ergebnisse der möglichen Einsparungen der Energieregion Strudengau durch die Durchführung der Maßnahme "Dämmung der Außenwände" dargestellt. Die einzelnen Berechnungsschritte werden in Kapitel 2.3.1 beschrieben.

-

⁷² Vgl. Kollmann (2009)

Tabelle 2-44: Jährliches Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Region Strudengau bei Dämmung der Außenwände

Art des Wohnge-	ø Wohn- nutz-	ø Anzahl an Whg.	Anzahl der zu	er zu der zu [kWh/m²a		ø HWB [kWh/m²a]		nung der enwände
bäudes	fläche je Whg.	je Gebäu- de	sanie- renden Gebäu- de 1945- 1960	sanie- renden Gebäu- de 1961- 1980	sanieren den Gebäu- de gesamt		HWB neu	Δ [kWh/a]
1-2 Whg.	107,8	1,2	764	1993	2.757	199	110	32.273.044
3-10 Whg.	72,0	5,0	42	66	108	126	70	2.217.527
>10 Whg.	65,1	14,6	1	20	21	104	58	920.045
Summe			807	2.079	2.886			35.410.616

Quelle: eigene Berechnungen.

Das jährliche theoretische Gesamteinsparungspotential an Heizwärme für Gebäude der Bauperiode 1945 bis 1980 beträgt 35,4 GWh, siehe Tabelle 2-44. In der Tabelle 2-45 sind zuerst die Ergebnisse für Ein- und Zweifamilienwohngebäude, danach für Mehrfamilienwohngebäude mit 3 bis 10 Wohnungen und dann für Mehrfamilienwohngebäude mit mehr als 10 Wohnungen aufgezeigt. Aufgrund der Szenarienbetrachtung, beschrieben in den vorangegangenen Unterkapiteln, ergibt sich für Szenario 1 eine jährliche neu hinzukommende Heizwärmeeinsparung von 723.000 kWh, während im 2. Szenario sogar eine Reduktion in Höhe von 1.046.000 kWh möglich ist. Kumuliert bis ins Jahr 2030 ergibt sich so eine Gesamteinsparungssumme von 148 GWh bzw. 11,3 Mio € für Szenario 1 und 215 GWh bzw. 16,5 Mio. € für Fall 2. ⁷³

Tabelle 2-45: Szenarien der Energieeinsparung bei Dämmung der Außenwände

ø HWB	[kWh/a]	An- zahl ⁷⁴				kumuliert bis 2020	Σ 2030 [kWh]	kumuliert bis 2030 [kWh]				
Vor Sanie rung	Nach Sanie rung	Zam	2013 bei MFG [kWh/a]	ei [kWh]		[KVIII]	[kWh]		2000 [8001]			
	Szenario 1											
199	110	55,14	645.491	1.936.472	3.872.944	6.454.907	35.501.987	12.909.814	135.553.042			
126	70	18,00	55.784	365.549	365.549	756.036	1.927.494	1.313.873	8.900.463			
104	58	4,00	22.379	174.075	174.075	330.729	800.692	554.521	3.598.094			
Summe			723.654	2.476.096	4.412.568	7.541.671	38.230.174	14.778.208	148.051.599			

⁷³ Ohne Berücksichtigung von Energiepreissteigerung, Inflation und Zinsrechnung.

⁷⁴ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

80

	Szenario 2											
199	110	55,14	968.236	2.904.708	5.809.416	9.682.360	53.252.981	19.364.720	203.329.563			
126	70	18,00	55.784	365.549	365.549	756.036	1.927.494	1.313.873	8.900.463			
104	58	4,00	22.379	174.075	174.075	330.729	800.692	554.521	3.598.094			
Summe			1.046.399	3.444.332	6.349.040	10.769.125	55.981.168	21.233.115	215.828.120			

Quelle: eigene Berechnungen.

Nachfolgend werden die Vermeidungskosten für CO₂-Emissionen für die Sanierung der Außenwände und des Betriebes (Raumwärme) überblicksmäßig dargestellt.⁷⁵ Für die Berechnungen wurde wieder der Durchschnitt der Ergebnisse der Modellgebäude 1a und 2a gebildet. Die Annahmen sind äquivalent zu jenen in den vorangegangenen Berechnungsfällen (nachzulesen in Kapitel 2.3.1).

Wie aus den Ausführungen in Kollmann (2009) hervorgeht, belaufen sich die Kosten der Sanierung der Außenwände durchschnittlich auf 18.780 €. Durch die Kreditaufnahme ergeben sich so jährliche Tilgungskosten von 1.332 €. Mit der Umsetzung der Maßnahme wird die Nutzenergiekennzahl um 93 kWh/m²a reduziert. Der Annuitätenzuschuss beläuft sich jährlich auf 333 €. Die Darstellung der Ergebnisse erfolgt in Tabelle 2-36.

Tabelle 2-46: Kosten und CO₂-Emissionen vor und nach Durchführung der Sanierung der Außenwände⁷⁶

	Vor der Sanierungsmaßnahme	Nach der Sanierungsmaßnahme	Δ
Jährl. Energieverbrauchskosten	3.127 €	1.684€	1.442 €
Jahresgesamtkosten ohne Wohnbauförderung	3.127 €	2.763€	-110€
Jahresgesamtkosten mit Wohnbauförderung	3.127 €	2.429€	-443€
Jährl. CO ₂ -Emissionen	9,95 t	5,36 t	4,59 t

Quelle: Tichler et al. (2010), eigene Darstellung.

Bei dieser Maßnahme sind die Vermeidungskosten mit und ohne Inanspruchnahme der Wohnbauförderung negativ, zwischen -24 €/t_{CO2e} und -97 €/t_{CO2e}. Die Sanierung der Außenwände kann daher ökonomisch und ökologisch als sinnvoll betrachtet werden.⁷⁷

81

 $^{^{75}}$ CO $_2$ -Vermeidungskosten (2010)

Die Jahresgesamtkosten nach der Durchführung der Sanierungsmaßnahme setzen sich aus den jährlichen Energieverbrauchskosten und dem Kapitaldienst zusammen. Bei Inanspruchnahme der Wohnbauförderung wird anschließend noch der Annuitätenzuschuss abgezogen.

⁷⁷ Vgl. Tichler et al. (2010)

Durch die Verwendung der in der Studie Tichler et al. (2010) angeführten Ergebnisse, konnte das Einsparungspotential berechnet werden. Bei Durchführung dieser Sanierungsvariante in allen in den Szenarien vorgesehenen Bauten des Gebäudetyps Ein- und Zweifamilienwohngebäude ergibt sich somit im Jahr 2030 (in diesem Jahr sind alle Sanierungen abgeschlossen) eine Einsparung von $5.060~t_{CO2}$ in Szenario 1 bzw. $7.600~t_{CO2}$ in Szenario 2.

Für die Berechnung der gesamten CO₂-Vermeidungskosten und des Einsparungspotentials wurden Annahmen für Mehrfamilienwohngebäude beider Größenklassen, mit 3 bis 10 Wohnungen und mehr als 10 Wohnungen, getroffen, welche in Kapitel 2.3.1 nachgelesen werden können.

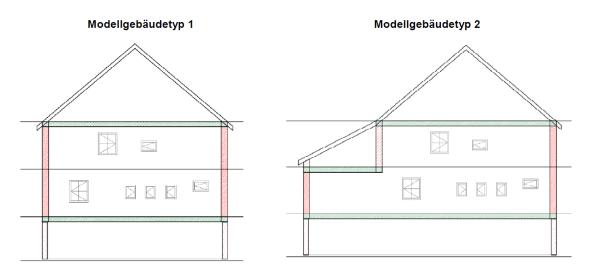
Tabelle 2-47: CO₂-Einsparungspotential der Region Strudengau bei Dämmung der Außenwände

		Dämmung der Außenwände									
Gebäude CO ₂ -Einsparung je Gebäude [t _{CO2}]	CO₂-Einsparung	CO ₂ -Vermeidungs	kosten [€/t _{CO2}]	CO ₂ -Einsparung gesamt [t _{CO2}]							
	Ohne Förderung	Mit Förderung	Szenario 1	Szenario 2							
1-2 Whg.	4,59	-24	-97	5.062	7.592,78						
3-10 Whg.	6,37	95	-17	465	465						
>10 Whg.	13,58	173	47	204	204						
Summe				5.730	8.261						

Quelle: eigene Berechnungen.

In Tabelle 2-47 sind die gesamten Ergebnisse der einzelnen Gebäude nach Größenklasse sortiert dargestellt. Für Mehrfamilienwohngebäude mit 3 bis 10 Wohnungen wurde eine Einsparung von 6,37 t_{CO2} je Gebäude berechnet, wodurch sich eine Gesamteinsparung von 465 t_{CO2} für beide Szenarien ergibt. Bei Wohngebäuden mit mehr als 10 Wohnungen hingegen ergibt sich eine Einsparung je Gebäude von 13,58 t_{CO2} und somit ein Gesamteinsparungspotential von 204 t_{CO2}. Im Gegensatz zu Ein- und Zweifamilienwohngebäuden kann diese Maßnahme nur im Bereich Mehrfamilienwohngebäude mit 3 bis 10 Wohnungen unter den angewandten Annahmen und der Förderunterstützung ökonomisch sinnvoll durchgeführt werden. Obwohl die Einsparung bei Einund Zweifamiliengebäuden je Gebäude am geringsten ist, wird doch deutlich, dass durch die große Anzahl an diesen Bauten die höchste Gesamteinsparung erreicht werden kann. In Summe ergibt sich für alle Gebäudearten eine Einsparung von 5.730 t_{CO2} bzw. 8.260 t_{CO2}.

2.3.5 Thermische Sanierung


Als nächste Maßnahme wird die umfassende thermische Sanierung betrachtet. In diesem Fall werden die vorhin betrachteten Einzelmaßnahmen zusammen durchgeführt, diese sind:

- Thermische Sanierung der Außenwand
- Thermische Sanierung der obersten Geschoßdecke
- Thermische Sanierung der Kellerdecke

Thermische Sanierung der Wand zum Dachraum (nur bei Modellgebäudetyp 2)⁷⁸

Durch die zeitgleiche Durchführung der verschiedenen Sanierungsmaßnahmen ergaben sich Kennwerte, die unterschiedlich zu der Summe der vorhin ermittelten Werte sind. Dieser Umstand ist auf die veränderten Leitwertzuschläge für Wärmebrücken zurückzuführen.

Abbildung 2-9: 2D-Frontansicht der Modellgebäudetypen, Maßnahme "Thermische Sanierung"

Quelle: Kollmann (2009), S. 240.

Wird eine umfassende thermische Sanierung durchgeführt, erhöht sich bei Erreichen einer bestimmten Nutzenergiekennzahl der Annuitätenzuschuss, wie bereits in Tabelle 2-2 dargestellt. Die förderbare Höchstsumme von 37.000 € bleibt dabei bestehen. Zunächst werden somit die Nutzenergiekennzahlen aufgelistet, die bei dieser Maßnahme erreicht werden können.

Tabelle 2-48: Nutzenergiekennzahlen und Energieeinsparungen für die Maßnahme "Thermische Sanierung"

Modellgebäude	NEZ [kV	Vh/m²a]	Reduktion	Reduktion	
	Alt	Neu	[%]	[kWh]	
1a	216	66	70,0	32.791	
1b	185	65	65,0	26.367	
2a	220	65	70,5	38.883	
2b	186 63		66,1	30.808	

Quelle: Kollmann (2009), eigene Darstellung.

⁷⁸ "Die Isolierung der Wand zum Dachraum wird nicht gesondert als Einzelmaßnahme betrachtet. Die Wand hat eine Fläche von ca. 20m², im Bestand bei dem Modellgebäude aus dem Jahr 1970 einen U-Wert von 0,922 W/m²K und nach der Isolierung einen U-Wert von 0,209 W/m²K.", Kollmann (2009), S. 240

83

Aufbauend auf den vorangegangenen Berechnungen wurde für die Maßnahme "Thermische Sanierung" bei einem Einfamilienhaus aus der Bauperiode 1945 bis 1960 eine durchschnittliche Energieeinsparung von 35.800 kWh pro Jahr angenommen. Bei Einfamilienwohngebäuden aus der Bauperiode 1961 bis 1980 wurde von einer jährlichen Energieeinsparung von 28.500 kWh ausgegangen. Für die Modellgebäude aus dem Jahr 1959 bedeutete dies eine Einsparung von ungefähr 70% gegenüber dem Ausgangszustand. Bei den Modellgebäuden von 1970 führte die Maßnahme zu einer Reduktion von ca. 65%.

Die Kosten der thermischen Sanierung ergaben sich durch die Addition der in den vorangegangenen Kapiteln berechneten Kosten. Somit wurden für diese Maßnahme Kosten in Höhe von 35.860 € (27.380 € exkl. MwSt.) für die Modellgebäude aus dem Jahr 1959 und 32.000 € (26.680 € exkl. MwSt.) für die Modellgebäude mit Baujahr 1970 ermittelt. ⁸⁰

Es wurde davon ausgegangen, dass für die Förderungen alle Voraussetzungen erfüllt wurden und die Laufzeit des aufgenommenen Darlehens 15 Jahre mit einer fixen Verzinsung von 6% beträgt. Zur Vorbeugung eventueller Veränderungen wurden die Kosten mit ± 10% variiert und exklusive und inklusive Mehrwertsteuer ausgewiesen. Die Ergebnisse werden in Tabelle 2-49 für die Modellgebäude des Jahres 1959 und in Tabelle 2-50 für die Modellgebäude aus dem Jahr 1970 dargestellt. ⁸¹

Tabelle 2-49: Darlehenskosten für die Finanzierung der Maßnahme "Thermische Sanierung" der Modellgebäude BJ 1959

	Exkl. MwSt [€]			Inkl. MwSt [€]		
	IST	+ 10%	- 10%	IST	+ 10%	- 10%
Darlehen	27.380	30.118	24.642	32.856	36.142	29.570
DR ohne Zuschuss jährlich	2.759	3.035	2.483	3.311	3.642	2.979
DR ohne Zuschuss über Laufzeit	41.382	45.520	37.244	49.658	54.624	44.692
DR mit Zuschuss jährlich	1.793	1.973	1.614	2.152	2.367	1.937
DR mit Zuschuss über Laufzeit	26.898	29.588	24.208	32.278	35.506	29.050
Reduktion der DR durch Zuschuss jährlich	966	1.062	869	1.159	1.275	1.043
Reduktion der DR durch Zuschuss über Laufzeit	14.484	15.932	13.035	17.380	19.118	15.642

Quelle: Kollmann (2009), eigene Darstellung. Anmerkung: DR = Darlehensrückzahlung = Tilgung.

80 Vgl. Kollmann (2009)

⁷⁹ Vgl. Kollmann (2009)

⁸¹ Vgl. Kollmann (2009)

So ergibt sich im Falle der Modellgebäude aus dem Jahr 1959 eine jährliche Rückzahlung von 2.500 € bis ca. 3.700 €. Durch den Zuschuss senken sich die Kosten pro Jahr auf 1.600 € bis 2.400 €.⁸²

Tabelle 2-50: Darlehenskosten für die Finanzierung der Maßnahme "Thermische Sanierung" der Modellgebäude BJ 1970

	Exkl. MwSt [€]			Inkl. MwSt [€]		
	IST	+ 10%	- 10%	IST	+ 10%	- 10%
Darlehen	26.680	29.348	24.012	32.016	35.218	28.814
DR ohne Zuschuss jährlich	2.688	2.957	2.419	3.226	3.548	2.903
DR ohne Zuschuss über Laufzeit	4.324	44.356	36.291	48.389	35.227	43.550
DR mit Zuschuss jährlich	1.747	1.922	1.573	2.097	2.307	1.887
DR mit Zuschuss über Laufzeit	26.210	28.831	23.589	31.453	34.598	28.307
Reduktion der DR durch Zuschuss jährlich	941	1.035	847	1.129	1.242	1.016
Reduktion der DR durch Zuschuss über Laufzeit	14.113	15.525	12.702	16.936	18.630	15.242

Quelle: Kollmann (2009), eigene Darstellung. Anmerkung: DR = Darlehensrückzahlung = Tilgung.

Die jährliche Belastung für die Modellgebäude mit Baujahr 1970 betragen ohne Zuschuss 2.700 € bis 3.600 € und mit Annuitätenzuschuss 1.580 € bis 2.300 € (Vgl. Kollman 2009)

Um das Kosten/Nutzenverhältnis der Sanierungsmaßnahme zu bestimmen, wurden erneut die Barwerte verschiedener Szenarien berechnet und in Tabelle 2-51 aufgelistet. Die den Szenarien zu Grunde liegenden Annahmen können in Kapitel 2.3.1 nachgelesen werden. In der Tabelle wurden die unrentablen Varianten grau hinterlegt.

Tabelle 2-51: Barwert der Energieeinsparungen durch die thermische Sanierung, verschiedene Szenarien

Barwert der Energieeinsparungen bei	Modellgebä	ude BJ 1959	Modellgebäude BJ 1970		
[€]	15 Jahre Laufzeit	25 Jahre Laufzeit	15 Jahre Laufzeit	25 Jahre Laufzeit	
Diskontsatz 4%, Preis konstant	25.872	36.353	20.597	28.940	
Diskontsatz 6%, Preis konstant	22.600	29.747	17.992	23.681	
Diskontsatz 4%, Preis 4%	33.563	55.938	26.719	44.531	
Diskontsatz 6%, Preis 4%	28.916	44.081	23.020	35.092	

⁸² Vgl. Kollmann (2009)

-

Diskontsatz 4%, Preis 6%	38.480	70.968	30.633	56.497
Diskontsatz 6%, Preis 6%	32.929	54.882	26.215	43.691

Quelle: Kollmann (2009), eigene Darstellung.

Die Tabelle stellt den Einfluss von Preisentwicklung und Diskontsatz auf den Barwert der Einsparung dar. Es gilt dabei: je höher der Diskontsatz umso geringer der Barwert und je höher das Preiswachstum umso höher der Barwert der Einsparungen.

Tabelle 2-52: Kumulierte Kosten der Maßnahme "Thermische Sanierung" über die Kreditlaufzeit, mit und ohne Annuitätenzuschuss, mit und ohne MwSt. der Modellgebäude BJ 1959

	Ohne Annuitätenzuschuss	Mit Annuitätenzuschuss
Exkl. MwSt. IST-Kosten	41.382	26.898
Exkl. MwSt. + 10% Kosten	45.520	29.588
Exkl. MwSt. – 10% Kosten	37.244	24.208
Inkl. MwSt. IST-Kosten	49.658	32.278
Inkl. MwSt. + 10% Kosten	54.624	35.508
Inkl. MwSt. – 10% Kosten	44.692	29.050

Quelle: Kollmann (2009), eigene Darstellung.

Tabelle 2-53: Kumulierte Kosten der Maßnahme "Thermische Sanierung" über die Kreditlaufzeit, mit und ohne Annuitätenzuschuss, mit und ohne MwSt. der Modellgebäude BJ 1970

	Ohne Annuitätenzuschuss	Mit Annuitätenzuschuss
Exkl. MwSt. IST-Kosten	40.324	26.210
Exkl. MwSt. + 10% Kosten	44.356	28.831
Exkl. MwSt. – 10% Kosten	36.291	23.589
Inkl. MwSt. IST-Kosten	48.389	31.453
Inkl. MwSt. + 10% Kosten	53.227	34.598
Inkl. MwSt. – 10% Kosten	43.550	28.307

Quelle: Kollmann (2009), eigene Darstellung.

Wie in den vorangegangen Kapiteln wurden nicht lukrative Szenarien grau hinterlegt. Die Maßnahme "Thermische Sanierung" ist bei den Modellgebäuden aus dem Jahr 1959 nur bei den Szenarien mit einem Diskontsatz von 6% und kontantem Preis unrentabel. Bei allen anderen Varianten können die Sanierungsmaßnahmen kosteneffizient durchgeführt werden.

Die Berechnungen ergaben für die Modellgebäude aus dem Jahr 1970, dass, bei einer Laufzeit von 15 Jahren, nur Sanierungen mit einem Diskontsatz von 4% und einer Preissteigerung von 4 oder 6 %, sowie mit einem Diskontsatz von 6% und einer Preissteigerung von 6% kosteneffizient durchgeführt werden können. Bei einer Laufzeit von 25 Jahren sind alle Varianten rentabel.

Die Berechnung der Kosten für Mehrfamilienwohngebäude ist im Kapitel 2.3.1 beschrieben. Es ergeben sich für die Durchführung der Maßnahme "Thermische Sanierung" folgende Kosten für Mehrfamilienwohngebäude:

mit 3 bis 10 Wohnungen: 51.420 €

mit mehr als 10 Wohnungen: 134.850 €

Des Weiteren werden die Ergebnisse der möglichen Einsparungen der Klima- und Energie-Modellregion Strudengau durch die Durchführung der Maßnahme "Thermische Sanierung" dargestellt. Die einzelnen Berechnungsschritte werden in Kapitel 2.3.1 beschrieben.

Tabelle 2-54: Jährliches Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Region Strudengau bei thermischer Sanierung

Art des Wohnge-	ø Wohn- nutz-	ø Anzahl an Whg.	Anzahl der zu	Anzahl der zu	Anzahl der zu	ø HWB [kWh/m²a]		rmische nierung
bäudes	fläche je Whg.	je Gebäu- de	sanie- renden Gebäu- de 1945- 1960	sanie- renden Gebäu- de 1961- 1980	sanieren den Gebäu- de gesamt		HWB neu	Δ [kWh/a]
1-2 Whg.	107,8	1,2	764	1993	2.757	199	67	48.086.667
3-10 Whg.	72,0	5,0	42	66	108	126	42	3.315.285
>10 Whg.	65,1	14,6	1	20	21	104	36	1.361.189
Summe			807	2.079	2.886			52.763.142

Quelle: eigene Berechnungen.

Durch die thermische Sanierung aller noch zu sanierenden Gebäude der Bauperiode 1945 bis 1980 könnte sich der Heizwärmeverbrauch theoretisch um 52,7 GWh jährlich in der Klima- und Energie-Modellregion Strudengau verringern, dargestellt in Tabelle 2-54. Für die Erreichung eines realistischeren Zieles wurden zwei unterschiedliche Szenarien angenommen, welche sich in der Höhe der Sanierungsrate von Ein- und Zweifamilienwohngebäuden unterscheiden. Details zu den Annahmen können in Kapitel 2.3.1 nachgelesen werden.

Tabelle 2-55: Szenarien der Energieeinsparung bei thermischer Sanierung

ø HWB	ø HWB [kWh/a] An-		Δ bei δ bzw.	Σ 2013 [kWh]	kumuliert bis 2013	Σ 2020 [kWh]	kumuliert bis 2020	Σ 2030 [kWh]	kumuliert bis 2030 [kWh]
Vor Sanie rung	Nach Sanie rung	Zaili	nach 2013 bei MFG [kWh/a]	[KWII]	[kWh]	[KWII]	[kWh]	[KVVII]	2030 [KWII]
					Szenario	1			
199	67	55,14	961.808	2.885.424	5.770.847	9.618.078	52.899.431	19.236.157	201.979.647
126	42	18,00	83.496	545.544	545.544	1.130.019	2.883.442	1.964.982	13.320.486
104	36	4,00	33.118	257.275	257.275	489.099	1.184.570	820.276	5.324.281
Summe			1.078.422	3.688.243	6.573.667	11.237.196	56.967.444	22.021.415	220.624.413
					Szenario	2			
199	67	55,14	1.442.712	4.328.135	8.656.271	14.427.118	79.349.147	28.854.235	302.969.470
126	42	18,00	83.496	545.544	545.544	1.130.019	2.883.442	1.964.982	13.320.486
104	36	4,00	33.118	257.275	257.275	489.099	1.184.570	820.276	5.324.281
Summe			1.559.326	5.130.955	9.459.090	16.046.235	83.417.159	31.639.493	321.614.236

Quelle: eigene Berechnungen.

In Tabelle 2-55 sind zuerst die Ergebnisse für Ein- und Zweifamilienwohngebäude, danach für Mehrfamilienwohngebäude mit 3 bis 10 Wohnungen und dann für Mehrfamilienwohngebäude mit mehr als 10 Wohnungen aufgezeigt. In Szenario 1 entwickelte sich eine jährlich neu hinzukommende Heizwärmeeinsparung in Höhe von 3.688.000 kWh. Somit kann eine kumulierte Reduktion an benötigter Wärme bis 2030 von 220 GWh erreicht werden, welche einer Kostenreduktion von 16,8 Mio. € entspricht. 84

Als Ergebnis der Sanierungen in Szenario 2 könnte eine jährliche Reduktion der Heizwärme in Höhe von 1.559.000 kWh erreicht werden. Die daraus entstehende Gesamteinsparung würde 321 GWh Heizwärme betragen und somit die Kosten um 24,6 Mio. € senken.

Für diese Maßnahme wurden die Vermeidungskosten für Treibhausgasemissionen nicht speziell berechnet. Aufgrund der Ähnlichkeit der Analyse, wird auf die Ausführungen zu den Vermeidungskosten der Maßnahme Gesamtsanierung verwiesen, unter Kapitel 2.3.6. Der Unterschied der beiden Varianten liegt lediglich darin, dass bei der Gesamtsanierung der Austausch von Fenstern und Außentüren, im Gegensatz zur thermischen Sanierung, berücksichtigt ist.

⁸³ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

⁸⁴ Ohne Berücksichtigung von Energiepreissteigerung, Inflation und Zinsrechnung.

2.3.6 Gesamtsanierung (thermische Sanierung und Fenster- bzw. Außentürentausch)

Im Zuge der Maßnahme "Gesamtsanierung" wurde eine umfassende thermische Sanierung zuammen mit dem Tausch aller Fenster und Außentüren analysiert. Folgende, in den vorherigen Kapiteln bereits behandelten, Sanierungsmaßnahmen wurden zu einer Gesamtsanierungsmaßnahme zusammengefasst:

- Thermische Sanierung der Außenwand
- Thermische Sanierung der obersten Geschoßdecke
- Thermische Sanierung der Kellerdecke
- Thermische Sanierung der Wand zum Dachraum (nur bei Modellgebäude 2)
- Tausch aller Fenster und Außentüren

Durch die gesamte Durchführung der einzelnen Sanierungsmaßnahmen wurden nachfolgende Nutzenergiekennzahlen und Energieeinsparungen berechnet:

Tabelle 2-56: Nutzenergiekennzahlen und Energieeinsparungen für die Maßnahme "Thermische Sanierung"

Modellgebäude	NEZ [kV	Wh/m²a]	Reduktion	Reduktion	
.	Alt	Neu	[%]	[kWh]	
1a	216	44	80	37.591	
1b	185	43	77	31.158	
2a	220	46	79	43.729	
2b	186	44	76	35.658	

Quelle: Kollmann (2009), eigene Darstellung.

Für die nächsten Analyseschritte wurde angenommen, dass bei Einfamilienhäusern der Bauperiode 1945 bis 1960 eine durchschnittliche jährliche Einsparung von 40.600 kWh durch die Gesamtsanierung erreicht werden kann. Bei Einfamilienwohngebäuden der Periode 1961 bis 1980 kann sich der jährliche Verbrauch im Schnitt um 33.400 kWh pro Jahr verringern. Für die beiden Modellgebäude aus dem Jahr 1959 bedeutet dies eine Reduktion von 79% und bei Gebäuden mit dem Baujahr 1970 kann eine Einsparung von 76% gegenüber dem IST-Zustand erreicht werden (vgl. Kollmann 2009)

Die Kosten der Gesamtsanierung wurden aus den berechneten Kosten der vorangegangen Maßnahmenanalysen aufsummiert und betragen für das Modellhaus aus dem Jahr 1959 42.800 € (35.680 € exkl. MwSt.) und für das Modellgebäude des Jahres 1970 42.000 € (34.980 € exkl. MwSt.). Natürlich besteht die Möglichkeit, dass sich die Kosten, je nach Anteil durch Eigenleistung bei der Bauausführung, senken. 85

.

⁸⁵ Vgl. Kollmann (2009)

Eine Förderung des Landes OÖ kann für die Gesamtsanierung in Höhe von 37.000 € in Anspruch genommen werden. Für die gesamte Sanierungssumme muss ein Kredit aufgenommen werden. Die Nutzenergiezahl, welche nach der Sanierung erreicht werden kann, spielt eine wesentliche Rolle bei der Höhe des Annuitätenzuschusses und der Kreditlaufzeit. So werden etwa bei einer NEZ von ≤ 75 kWh/m²a nur 30% Zuschuss über eine Dauer von 15 Jahren gewährt, während bei einer Passivhaussanierung 40% Annuitätenzuschuss bei einer Laufzeit von 25 Jahren gewährt wird. Die Abstufungen je NEZ sind in Tabelle 2-2 aufgelistet.

Für alle vier Modellgebäude kann ein Annuitätenzuschuss von 40% beantragt werden. Es wurde weiter davon ausgegangen, dass für die Förderungen alle Voraussetzungen erfüllt werden und die Laufzeit des aufgenommenen Darlehens 15 Jahre mit einer fixen Verzinsung von 6% beträgt. Zur Vorbeugung eventueller Veränderungen, wurden die Kosten mit ± 10% variiert und exklusive und inklusive Mehrwertsteuer ausgewiesen⁸⁶. Die Ergebnisse werden in Tabelle 2-57 für die Modellgebäude des Jahres 1959 und in Tabelle 2-58 für die Modellgebäude aus dem Jahr 1970 dargestellt.

Tabelle 2-57: Darlehenskosten für die Finanzierung der Maßnahme "Gesamtsanierung" der Modellgebäude BJ 1959

	Ex	kl. MwSt	[€]	Inkl. MwSt [€]		
	IST	+ 10%	- 10%	IST	+ 10%	- 10%
Darlehen	35.680	39.248	32.112	41.816	47.098	38.534
DR ohne Zuschuss jährlich	3.595	3.955	3.236	4.314	4.746	3.883
DR ohne Zuschuss über Laufzeit	53.926	59.319	48.534	64.711	71.183	58.240
DR mit Zuschuss jährlich	2.157	2.463	1.941	2.823	3.254	2.391
DR mit Zuschuss über Laufzeit	32.356	36.950	29.120	42.343	48.814	35.872
Reduktion der DR durch Zuschuss jährlich	1.438	1.491	1.294	1.491	1.491	1.491
Reduktion der DR durch Zuschuss über Laufzeit	21.570	22.369	19.413	22.369	22.369	22.369

Quelle: Kollmann (2009), eigene Darstellung. Anmerkung: DR = Darlehensrückzahlung = Tilgung.

So ergibt sich im Falle der Modellgebäude aus dem Jahr 1959 eine jährliche Rückzahlung von 3.250 € bis ca. 4.750 €. Durch den Zuschuss senken sich die Kosten pro Jahr auf 2.000 € bis 3.400 € (vgl. Kollmann 2009)

.

⁸⁶ Vgl. Kollmann (2009)

Tabelle 2-58: Darlehenskosten für die Finanzierung der Maßnahme "Gesamtsanierung" der Modellgebäude BJ 1970

	Ex	kl. MwSt	[€]	Inkl. MwSt [€]		
	IST	+ 10%	- 10%	IST	+ 10%	- 10%
Darlehen	34.980	38.478	31.482	41.976	46.174	37.778
DR ohne Zuschuss jährlich	3.525	3.877	3.172	4.229	4.652	3.807
DR ohne Zuschuss über Laufzeit	52.868	58.155	47.581	63.442	69.786	57.098
DR mit Zuschuss jährlich	2.115	2.386	1.903	2.738	3.161	2.315
DR mit Zuschuss über Laufzeit	31.721	35.787	28.549	41.073	47.418	34.729
Reduktion der DR durch Zuschuss jährlich	1.410	1.491	1.269	1.491	1.491	1.491
Reduktion der DR durch Zuschuss über Laufzeit	21.147	22.369	19.033	22.369	22.369	22.369

Quelle: Kollmann (2009), eigene Darstellung. Anmerkung: DR = Darlehensrückzahlung = Tilgung.

Die jährliche Belastung für die Modellgebäude mit Baujahr 1970 betragen ohne Zuschuss 3.180 € bis 4.230 € und mit Annuitätenzuschuss 1.900 € bis 3.000 € (vgl. Kollmann 2009).

Um das Kosten/Nutzenverhältnis der Sanierungsmaßnahme zu bestimmen, wurden erneut die Barwerte verschiedener Szenarien berechnet und in Tabelle 2-59 aufgelistet. Die den Szenarien zu Grunde liegenden Annahmen können in Kapitel 2.3.1 nachgelesen werden. In der Tabelle wurden die unrentablen Varianten grau hinterlegt.

Tabelle 2-59: Barwert der Energieeinsparungen durch die thermische Gesamtsanierung, verschiedene Szenarien

Barwert der Energieeinsparungen bei	Modellgebä	ude BJ 1959	Modellgebäude BJ 1970		
[€]	15 Jahre Laufzeit	25 Jahre Laufzeit	15 Jahre Laufzeit	25 Jahre Laufzeit	
Diskontsatz 4%, Preis konstant	28.908	40.617	23.632	33.205	
Diskontsatz 6%, Preis konstant	25.252	33.237	20.643	27.171	
Diskontsatz 4%, Preis 4%	37.500	62.500	30.656	51.094	
Diskontsatz 6%, Preis 4%	32.309	49.252	26.412	40.264	
Diskontsatz 4%, Preis 6%	42.994	79.294	35.148	64.823	
Diskontsatz 6%, Preis 6%	36.792	61.321	30.078	50.130	

Quelle: Kollmann (2009), eigene Darstellung.

Die Tabelle stellt den Einfluss von Preisentwicklung und Diskontsatz auf den Barwert der Einsparung dar. Es gilt dabei: je höher der Diskontsatz umso geringer der Barwert und je höher das Preiswachstum umso höher der Barwert der Einsparungen.

Tabelle 2-60: Kumulierte Kosten der Maßnahme "Gesamtsanierung" über die Kreditlaufzeit, mit und ohne Annuitätenzuschuss, mit und ohne MwSt. der Modellgebäude BJ 1959

	Ohne Annuitätenzuschuss	Mit Annuitätenzuschuss
Exkl. MwSt. IST-Kosten	53.926	32.356
Exkl. MwSt. + 10% Kosten	59.319	36.950
Exkl. MwSt. – 10% Kosten	48.534	29.120
Inkl. MwSt. IST-Kosten	64.711	42.343
Inkl. MwSt. + 10% Kosten	71.183	48.814
Inkl. MwSt. – 10% Kosten	58.240	35.872

Quelle: Kollmann (2009), eigene Darstellung.

Tabelle 2-61: Kumulierte Kosten der Maßnahme "Gesamtsanierung" über die Kreditlaufzeit, mit und ohne Annuitätenzuschuss, mit und ohne MwSt. der Modellgebäude BJ 1970

	Ohne Annuitätenzuschuss	Mit Annuitätenzuschuss
Exkl. MwSt. IST-Kosten	52.868	31.721
Exkl. MwSt. + 10% Kosten	58.155	35.787
Exkl. MwSt. – 10% Kosten	47.581	28.549
Inkl. MwSt. IST-Kosten	63.442	41.073
Inkl. MwSt. + 10% Kosten	69.786	47.418
Inkl. MwSt. – 10% Kosten	57.098	34.729

Quelle: Kollmann (2009), eigene Darstellung.

Die Berechnungen ergaben für die Modellgebäude aus dem Jahr 1970, dass, bei einer Laufzeit von 15 Jahren, nur Sanierungen mit einem Diskontsatz von 4% und einer Preissteigerung von 4 oder 6 %, sowie mit einem Diskontsatz von 6% und einer Preissteigerung von 6% kosteneffizient durchgeführt werden können. Bei einer Laufzeit von 25 Jahren sind alle Varianten außer jene mit einem Diskontsatz von 6% mit konstantem Preis rentabel.

Die Berechnung der Kosten für Mehrfamilienwohngebäude ist im Kapitel 2.3.1 beschrieben. Es ergeben sich für die Durchführung einer Gesamtsanierung folgende Kosten für Mehrfamilienwohngebäude:

mit 3 bis 10 Wohnungen:

mit mehr als 10 Wohnungen:

200.080 €

Im Anschluss werden die Ergebnisse der möglichen Einsparungen der Klima- und Energie-Modellregion Strudengau, die durch die Ausführung der Maßnahme "Gesamtsanierung" erreicht werden könnte, dargestellt. Die einzelnen Berechnungsschritte werden in Kapitel 2.3.1 beschrieben.

Tabelle 2-62: Jährliches Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Region Strudengau bei Gesamtsanierung

Art des Wohnge- bäudes	ø Wohn- nutz- fläche je	ø Anzahl an Whg. je	Anzahl der zu sanie-	Anzahl der zu sanie-	Anzahl der zu sanieren	ø HWB [kWh/m²a]	Fens	sch von tern und entüren
	Whg.	Gebäu- de	renden Gebäu- de 1945- 1960	renden Gebäu- de 1961- 1980	den Gebäu- de gesamt		HWB neu	Δ [kWh/a]
1-2 Whg.	107,8	1,2	764	1993	2.757	199	46	55.653.109
3-10 Whg.	72,0	5,0	42	66	108	126	29	3.821.519
>10 Whg.	65,1	14,6	1	20	21	104	25	1.588.717
Summe			807	2.079	2.886			61.063.345

Quelle: eigene Berechnungen.

Aus Tabelle 2-62 kann das gesamte theoretisch mögliche jährliche Heizwärmegesamtpotential abgelesen werden. Es ergibt sich eine jährliche Reduktion in der Höhe von 61 GWh für die Region Strudengau.

Tabelle 2-63: Szenarien der Energieeinsparung bei Gesamtsanierung

	IWB /h/a]	An- zahl	Δ bei δ bzw. nach 2013 bei	Σ 2013 [kWh]	kumuliert bis 2013 [kWh]	Σ 2020 [kWh]	kumuliert bis 2020 [kWh]	Σ 2030 [kWh]	kumuliert bis 2030 [kWh]
Vor Sa- nier- ung	Nach Sa- nier- ung		MFG [kWh/a]		[KWII]		[KWII]		[KWII]
					Szenario	1			
199	46	55,14	1.113.107	3.339.321	6.678.641	11.131.069	61.220.878	22.262.137	233.752.443
126	29	18,00	96.112	630.175	630.175	1.302.958	3.321.307	2.264.076	15.335.288
104	25	4,00	38.642	300.648	300.648	571.143	1.382.630	957.565	6.212.908
Summ	ne		1.247.861	4.270.143	7.609.464	13.005.170	65.924.815	25.483.779	255.300.639

٥.

⁸⁷ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

	Szenario 2									
199	46	55,14	1.669.660	5.008.981	10.017.962	16.696.603	91.831.317	33.393.206	350.628.665	
126	29	18,00	96.112	630.175	630.175	1.302.958	3.321.307	2.264.076	15.335.288	
104	25	4,00	38.642	300.648	300.648	571.143	1.382.630	957.565	6.212.908	
Summ	Summe		1.804.414	5.939.804	10.948.785	18.570.704	96.535.254	36.614.848	372.176.861	

Quelle: eigene Berechnungen.

In der Tabelle oberhalb sind zuerst die Ergebnisse für Ein- und Zweifamilienwohngebäude, danach für Mehrfamilienwohngebäude mit 3 bis 10 Wohnungen und dann für Mehrfamilienwohngebäude mit mehr als 10 Wohnungen aufgezeigt. Es wurden zwei Szenarien entwickelt, anhand derer der Sanierungsfortschritt durchgerechnet wurde. Aus Szenario 1 geht eine jährlich zusätzliche Einsparung von 1,2 GWh Heizwärme hervor, wodurch sich eine gesamte Reduktion an Wärmeenergie von 255 GWh bis zum Jahr 2030 ableiten lässt. Die Verringerung der Energiemenge entspricht einer Kostenersparnis von 19,5 Mio. €.88

In Szenario 2 wurde eine pro Jahr hinzukommende Reduktion an Heizwärme in der Höhe von 1,8 GWh herausgearbeitet. In der Folge ergibt sich eine kumulierte Einsparung bis ins Jahr 2030 von 372 GWh, welche einer Kostenverringerung von 28,5 Mio € gleichkommt.

Wie schon in den vorherigen Kapiteln werden an dieser Stelle die CO₂-Vermeidungskosten für die Maßnahme "Generalsanierung" beschrieben.⁸⁹ Für die Berechnungen wurde wieder der Durchschnitt der Ergebnisse der Modellgebäude 1a und 2a gebildet. Die Annahmen sind äquivalent zu jenen in den vorangegangenen Berechnungsfällen (nachzulesen in Kapitel 2.3.1).

Für den Fall einer Generalsanierung belaufen sich die Sanierungkosten im Schnitt auf 42.400 €⁹⁰. Um die Förderung, in Form eines 25%-igen Annuitätenzuschusses in Anspruch nehmen zu können, ist eine Kreditfinanzierung unumgänglich. Daraus ergeben sich jährliche Kosten für den Kapitaldienst von 3.008 €. Mit der Umsetzung der Maßnahme wird die Nutzenergiekennzahl um 157 kWh/m²a reduziert. Der Annuitätenzuschuss beläuft sich jährlich auf 752 €. Die Darstellung der Ergebnisse erfolgt in Tabelle 2-64.

Tabelle 2-64: Kosten und CO₂-Emissionen vor und nach Durchführung der Gesamtsanierung⁹¹

	Vor der Sanierungsmaßnahme	Nach der Sanierungsmaßnahme	Δ
Jährl. Energieverbrauchskosten	3.127 €	678€	2.448€

⁸⁸ Ohne Berücksichtigung von Energiepreissteigerung, Inflation und Zinsrechnung.

⁸⁹ CO₂-Vermeidungskosten (2010)

⁹⁰ Vgl. Kollmann (2009)

vgi. Kolimann (2009)

⁹¹ Die Jahresgesamtkosten nach der Durchführung der Sanierungsmaßnahme setzen sich aus den jährlichen Energieverbrauchskosten und dem Kapitaldienst zusammen. Bei Inanspruchnahme der Wohnbauförderung wird anschließend noch der Annuitätenzuschuss abgezogen.

Jahresgesamtkosten Wohnbauförderung	ohne	3.127 €	3.687 €	560€
Jahresgesamtkosten Wohnbauförderung	mit	3.127 €	2.935 €	-192€
Jährl. CO ₂ -Emissionen		9,95 t	2,16 t	7,79 t

Quelle: Tichler et al. (2010), eigene Darstellung.

Aus der Tabelle kann abgelesen werden, dass die Vermeidung von CO_2 ohne Inanspruchnahme der Wohnbauförderung zwar ökologisch sinnvoll wäre, ökonomisch jedoch nicht effizient durchgeführt werden kann. Die Kosten betragen in diesem Fall $72 \ \text{€/t}_{CO2e}$. Durch die Förderung werden CO_2 -Vermeidungskosten von -25 $\ \text{€/t}_{CO2e}$ erreicht und sind sowohl ökonomisch, wie auch ökologisch sinnvoll durchführbar.

Durch die Verwendung der in der Studie Tichler et al. (2010) angeführten Ergebnisse, konnte das Einsparungspotential berechnet werden. Bei Durchführung dieser Sanierungsvariante in allen in den Szenarien vorgesehenen Bauten des Gebäudetyps Ein- und Zweifamilienwohngebäude ergibt sich somit im Jahr 2030 (in diesem Jahr sind alle Sanierungen abgeschlossen) eine Einsparung von $8.600\ t_{CO2}$ in Szenario 1 bzw. $12.900\ t_{CO2}$ in Szenario 2.

Für die Berechnung der gesamten CO_2 -Vermeidungskosten und des Einsparungspotentials wurden Annahmen für Mehrfamilienwohngebäude beider Größenklassen, mit 3 bis 10 Wohnungen und mehr als 10 Wohnungen, getroffen, welche in Kapitel 2.3.1 nachgelesen werden können.

Tabelle 2-65: CO₂-Einsparungspotential der Region Strudengau bei Gesamtsanierung

		Ges	amtsanierung			
Gebäude	CO ₂ -Einsparung	CO ₂ -Vermeidungs	kosten [€/t _{co2}]	CO ₂ -Einsparung gesamt [t _{CO2}]		
	je Gebäude [t _{CO2}]	Ohne Förderung Mit Förderung		Szenario 1	Szenario 2	
1-2 Whg.	7,79	72	-25	8.591	12.886,22	
3-10 Whg.	10,97	247	49	801	801	
>10 Whg.	23,45	359	117	352	352	
Summe				9.743	14.039	

Quelle: eigene Berechnungen.

In Tabelle 2-65 sind die gesamten Ergebnisse der einzelnen Gebäude nach Größenklassen sortiert dargestellt. Für Mehrfamilienwohngebäude mit 3 bis 10 Wohnungen wurde eine Einsparung von 10,97 $t_{\rm CO2}$ je Gebäude berechnet, wodurch sich eine Gesamteinsparung von 800 $t_{\rm CO2}$ für beide Szenarien ergibt. Bei Wohngebäuden mit mehr als 10 Wohnungen hingegen ergibt sich eine Einsparung je Gebäude von 23,45 $t_{\rm CO2}$ und somit ein Gesamteinsparungspotential von

_

⁹² Vgl. Tichler et al. (2010)

 $350~t_{CO2}$. Auch im Bereich Mehrfamilienwohngebäude kann diese Maßnahme unter den angewandten Annahmen nicht ökonomisch sinnvoll durchgeführt werden. Obwohl die Einsparung bei Ein- und Zweifamiliengebäuden je Gebäude am geringsten ist, wird doch deutlich, dass durch die große Anzahl an diesen Bauten die höchste Gesamteinsparung erreicht werden kann. In Summe ergibt sich für alle Gebäudearten eine Einsparung von 9.740 t_{CO2} bzw. 14.040 t_{CO2} .

2.3.7 Zusammenfassung Sanierungsmaßnahmen

Die in den vorangegangenen Unterkapiteln dargestellten Sanierungsmaßnahmen werden in weiterer Folge überblicksmäßig zusammengefasst. Es wurden folgende Sanierungsmaßnahmen betrachtet:

- Tausch von Fenstern und Außentüren
- Dämmung der Kellerdecke
- Dämmung der Geschoßdecken
- Dämmung der Außenwände
- Thermische Sanierung
- Gesamtsanierung (thermische Sanierung und Fenster- bzw. Außentürentausch)

Die Maßnahmen wurden in der Studie Kollmann (2009) für den Gebäudetyp Ein- und Zweifamilienwohngebäude untersucht und das Potential für Oberösterreich berechnet. Für die Berechnung der Kosten wurde die Barwertmethode verwendet. Die Gegenüberstellung der Kreditszenarien und der Barwertberechnungen der Energieeinsparung für die Maßnahmen "Thermische Sanierung" und "Gesamtsanierung" erfolgt in der nachfolgenden Tabelle. Da bei einem Diskontsatz von 20 % keine Kosteneffizienz erreicht werden konnte, werden diese Varianten in der Tabelle nicht dargestellt.

In Tabelle 2-66 sind die Ergebnisse für den Gebäudetyp Ein- und Zweifamilienwohngebäude des Baujahres 1959 dargestellt. Es wird ersichtlich, dass mit einer Verlängerung der Laufzeit auf 25 Jahre deutlich mehr Varianten wirtschaftlich durchgeführt werden können. Es ist auch zu erkennen, dass durch eine rein thermische Sanierung ohne Austausch der Fenster und Außentüren die Kosteneffizienz öfter erreicht wird.

Tabelle 2-66: Gegenüberstellung Kreditszenarien und Barwert der Energieeinsparung - Thermische Sanierung und Gesamtsanierung Teil 1

Gesam	ntsanier	ung	Preis kor	nstant	Preis + 4	% p.a.	Preis + 6	% p.a.
			DS 4%	DS 6%	DS 4%	DS 6%	DS 4%	DS 6%
		Exkl. MwSt IST						
	ssn	Exkl. MwSt IST + 10%						
66	nsch	Exkl. MwSt IST - 10%						
195	Ohne Zuschuss	Inkl. MwSt IST						
ő Ö	oh.	Inkl. MwSt IST + 10%						
Jahr		Inkl. MwSt IST – 10%						
15.		Exkl. MwSt IST						
<u> </u>	<u>ss</u>	Exkl. MwSt IST + 10%						
eitra	Zeitraum: 15 Jahre, BJ 1959 Mit Zuschuss Ohne Zus	Exkl. MwSt IST – 10%						
Ž	t Zus	Inkl. MwSt IST						
	Ξ	Inkl. MwSt IST + 10%						
		Inkl. MwSt IST – 10%						
		Exkl. MwSt IST						
	Ohne Zuschuss	Exkl. MwSt IST + 10%						
29	usch	Exkl. MwSt IST - 10%						
199	Je Zi	Inkl. MwSt IST						
e, B	o I	Inkl. MwSt IST + 10%						
Zeitraum: 25 Jahre, BJ 1959		Inkl. MwSt IST – 10%						
25 .		Exkl. MwSt IST						
Ë	SST	Exkl. MwSt IST + 10%						
eitra	Mit Zuschuss	Exkl. MwSt IST - 10%						
N	t Zu	Inkl. MwSt IST						
	Ξ	Inkl. MwSt IST + 10%						
		Inkl. MwSt IST – 10%						

Quelle: Kollmann (2009), eigene Darstellung.

Anmerkung: Die orange markierten Felder zeigen eine kosteneffiziente Realisierung der Maßnahme "Thermische Sanierung" und gelb markierte Felder der Maßnahme "Gesamtsanierung". Weiße Felder bedeuten, dass die Maßnahme in diesem Fall nicht kosteneffizient durchgeführt werden kann.

In Tabelle 2-67 sind die Ergebnisse für den Gebäudetyp Ein- und Zweifamilienwohngebäude des Baujahres 1970 dargestellt. Im Gegensatz dem Gebäude aus dem Jahr 1959 sind deutlich weniger Szenarien kosteneffizienz durchführbar, was auf die höhere NEZ der später erbauten Gebäude zurückzuführen ist. Die rein thermische Sanierung ist auch hier wirtschaftlicher durchführbar als eine Gesamtsanierung bei Ein- und Zweifamilienwohngebäuden.

Tabelle 2-67: Gegenüberstellung Kreditszenarien und Barwert der Energieeinsparung - Thermische Sanierung und Gesamtsanierung Teil 2

Gesan	ntsanier	ung	Preis kor	nstant	Preis + 4	% p.a.	Preis + 6	% p.a.
			DS 4%	DS 6%	DS 4%	DS 6%	DS 4%	DS 6%
		Exkl. MwSt IST						
	nss	Exkl. MwSt IST + 10%						
6	ısch	Exkl. MwSt IST - 10%						
Zeitraum: 15 Jahre, BJ 1970	Ohne Zuschuss	Inkl. MwSt IST						
e, DA	o Pr	Inkl. MwSt IST + 10%						
Jahr		Inkl. MwSt IST – 10%						
15,		Exkl. MwSt IST						
<u>д</u> Е	<u>88</u>	Exkl. MwSt IST + 10%						
eitra	Mit Zuschuss	Exkl. MwSt IST – 10%						
N	t Zu:	Inkl. MwSt IST						
	Μit	Inkl. MwSt IST + 10%						
		Inkl. MwSt IST – 10%						
		Exkl. MwSt IST						
	ssnı	Exkl. MwSt IST + 10%						
2	usch	Exkl. MwSt IST – 10%						
J 197	Ohne Zuschuss	Inkl. MwSt IST						
e, B	o F	Inkl. MwSt IST + 10%						
Zeitraum: 25 Jahre, BJ 1970		Inkl. MwSt IST – 10%						
25 .		Exkl. MwSt IST						
Ë	SSI	Exkl. MwSt IST + 10%						
eitra	Mit Zuschuss	Exkl. MwSt IST – 10%						
N	t Zu	Inkl. MwSt IST						
	Ξ	Inkl. MwSt IST + 10%						
		Inkl. MwSt IST - 10%						

Quelle: Kollmann (2009), eigene Darstellung.

Anmerkung: Die orange markierten Felder zeigen eine kosteneffiziente Realisierung der Maßnahme "Thermische Sanierung" und gelb markierte Felder der Maßnahme "Gesamtsanierung". Weiße Felder bedeuten, dass die Maßnahme in diesem Fall nicht kosteneffizient durchgeführt werden kann.

Die Kosten für Mehrfamiliengebäude wurden mithilfe der Daten aus der Studie Tichler et al. (2009) berechnet. Es wurden äquivalente Kosten zu Ein- und Zweifamilienwohngebäuden von 210 €/m² für die Gesamtsanierung angenommen.⁹³ Diese Kosten wurden prozentuell auf die einzelnen Maßnahmen nach ihrem Anteil an den Kosten bei Ein- und Zweifamilienwohngebäuden aufgeteilt. In Tabelle 2-68 werden die Kosten je Gebäude für alle drei Gebäudetypen aufgelistet.

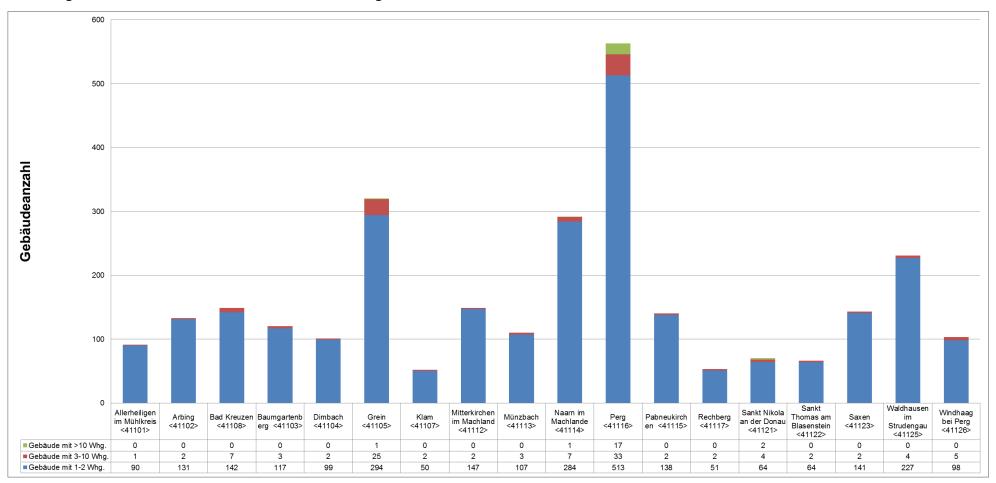
⁹³ Vgl. Tichler et al. (2009)

Tabelle 2-68: Sanierungskosten je Gebäude nach Maßnahme und Gebäudetyp

Maßnahme	1 – 2 Whg. ⁹⁴	3 – 10 Whg.	> 10 Whg.
Tausch Fenster u. Außentüren	15.600	24.870	65.224
Dämmung der Keller- und Geschoßdecke	13.000	20.751	54.420
Dämmung der Außenwände	19.200	30.668	80.430
Thermische Sanierung	35.860	51.419	134.850
Gesamtsanierung	42.800	76.290	200.075

Quelle: Kollmann (2009), eigene Berechnungen, eigene Darstellung.

Im nächsten Schritt wurde das gesamte Potential an unsanierten Gebäuden für die Klima- und Energie-Modellregion Strudengau berechnet. Es stellte sich heraus dass es sich beim Großteil der zu sanierenden Gebäude um Ein- und Zweifamilienwohngebäude handelt. Das ist darauf zurückzuführen, dass die LAG Strudengau eher ländliche Gemeinden umfasst. Die Aufteilung auf die einzelnen Gebäudeklassen wird in Abbildung 2-10 veranschaulicht.


Die meisten zu sanierenden Ein- und Zweifamilienwohngebäude befinden sich in den Gemeinden Perg, Grein, Naarn und Waldhausen. Auch der Großteil der Mehrfamilienwohngebäude befindet sich in den Stadtgemeinden Perg und Grein.

Das Potential wurde aus den Daten der Statistik Austria aus der letzten Gebäude- und Wohnungszählung 2001 berechnet. Da es sich dabei um die letzte Vollzählung handelt und spätere Datenerhebungen nur stichprobenartig erhoben und dann hochgerechnet wurden, konnten nur diese Daten, aus Gründen der Genauigkeit, verwendet werden.

_

⁹⁴ Es werden nur die Sanierungskosten für das Modellgebäude BJ 1958 dargestellt.

Abbildung 2-10: Potential unsanierter Gebäude in Strudengau nach Gemeinde

Quelle: ISIS Datenbank, eigene Darstellung.

Da die Datengrundlage, wie eingehend erwähnt, aus dem Jahr 2001 stammt, wurde der Gebäudebestand um die in der Periode 2001 bis 2010 sanierten Gebäude korrigiert. Dabei wurde die sogenannte Sanierungsrate, ein Korrekturfakor, angewendet. Im nächsten Schritt wurde die potentielle jährliche Einsparung für die einzelnen Sanierungsmaßnahmen berechnet. Da Ein- und Zweifamilienwohngebäude den Großteil der zu sanierenden Gebäude darstellen, ist auch hier das größte Einsparungspotential vorhanden. Somit ergibt sich, wenn alle Gebäude dieses Typs komplett saniert werden, eine Einsparung von 55 GWh jährlich. Zusammen mit den Mehrfamilienwohngebäuden ergibt sich eine jährliche Einsparung von 61 GWh. Bei Durchführung einzelner Sanierungsmaßnahmen, wie der Tausch von Fenster und Außentüren, die Dämmung der Kellerdecke oder die Dämmung der oberste Geschoßdecke, können lediglich rund 9 GWh eingespart werden.

Tabelle 2-69: Jährliches Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Region Strudengau, Gegenüberstellung der einzelnen Sanierungsmaßnahmen

Art des	Ø	ø	Anzahl	Anzahl	Anzahl	ø HWB																				
Wohnge- bäudes	Wohn- nutz- fläche je Whg.	Anzahl an Whg. je	der zu sanie- renden Gebäude	der zu sanie- renden Gebäude	der zu sanieren den Gebäude	[kWh/m² a]	Tausch von Fenstern und Außentüren		Fenstern und		Fenstern und		Fenstern und		Fenstern und			mung der lerdecke		mung der :hoßdecke		mung der enwände		ermische nierung	Gesar	ntsanierung
		Gebäu -de	1945- 1960	1961-1980	gesamt		HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]								
1-2 Whg.	107,8	1,2	764	1993	2.757	199	176	8.330.074	175	8.648.638	177	7.889.340	110	32.273.044	67	48.086.667	46	55.653.109								
3-10 Whg.	72,0	5,0	42	66	108	126	112	569.514	110	630.042	113	517.239	70	2.217.527	42	3.315.285	29	3.821.519								
>10 Whg.	65,1	14,6	1	20	21	104	92	239.947	94	215.604	92	246.405	58	920.045	36	1.361.189	25	1.588.717								
Summe			807	2.079	2.886			9.139.535		9.494.284		8.652.985		35.410.616		52.763.142		61.063.345								

Quelle: eigene Berechnungen.

Da einen sofortige Sanierung aller Gebäude sehr unwahrscheinlich ist, wurden zwei Sanierungsszenarien angenommen. Der Unterschied dieser beiden Szenarien besteht allein in der angenommenen Sanierungsrate von Ein- und Zweifamilienwohngebäuden, welche im Szenario 1 2% beträgt, wohingegen in Szenario 2 3% der Ein- und Zweifamilienwohngebäude gemäß Annahme jährlich saniert werden.

_

⁹⁵ Vgl. Kollmann (2009)

Tabelle 2-70: Szenarien der Energieeinsparung: Gegenüberstellung aller Sanierungsmaßnahmen Teil 1

1	Allgemeine	es				Szenario 1							Szenario 2			
ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw.	Σ 2013 [kWh]	kumuliert bis 2013	Σ 2020 [kWh]	kumuliert bis 2020	Σ 2030 [kWh]	kumuliert bis 2030	Δ bei δ bzw.	Σ 2013 [kWh]	kumuliert bis 2013	Σ 2020 [kWh]	kumuliert bis 2020	Σ 2030 [kWh]	kumuliert bis 2030
Vor Sanier ung	Nach Sanier ung		nach 2013 bei MFG [kWh/a]		[kWh]	[[kWh]	,,	[kWh]	nach 2013 bei MFG [kWh/a]	ţ ,	[kWh]		[kWh]	,,	[kWh]
							Taus	sch von Fenst	er und Außentü	ren						
199	176	55/82	166.601	499.804	999.609	1.666.015	9.163.082	3.332.030	34.986.312	249.902	749.707	1.499.413	2.499.022	13.744.622	4.998.045	52.479.468
126	112	18,00	14.302	94.129	94.129	194.240	494.575	337.257	2.282.283	14.302	94.129	94.129	194.240	494.575	337.257	2.282.283
104	92	4,00	5.834	45.466	45.466	86.307	208.830	144.651	938.133	5.834	45.466	45.466	86.307	208.830	144.651	938.133
			186.738	639.399	1.139.204	1.946.562	9.866.487	3.813.938	38.206.727	270.038	889.301	1.639.008	2.779.570	14.448.027	5.479.953	55.699.883
								Dämmung de	er Kellerdecke							
199	175	55/82	173.077	519.231	1.038.462	1.730.770	9.519.237	3.461.541	36.346.179	259.616	778.847	1.557.693	2.596.156	14.278.856	5.192.311	54.519.269
126	110	18,00	16.161	100.769	100.769	213.900	553.290	375.514	2.573.472	16.161	100.769	100.769	213.900	553.290	375.514	2.573.472
104	94	4,00	5.270	39.946	39.946	76.837	187.509	129.538	846.276	5.270	39.946	39.946	76.837	187.509	129.538	846.276
			194.509	659.946	1.179.177	2.021.507	10.260.037	3.966.593	39.765.927	281.047	919.562	1.698.408	2.886.892	15.019.656	5.697.363	57.939.017
				Dämmung der obersten Geschoßdecke												
199	177	55/82	157.727	473.182	946.363	1.577.272	8.674.996	3.154.544	33.122.713	236.591	709.772	1.419.545	2.365.908	13.012.494	4.731.816	49.684.070
126	113	18,00	12.795	87.411	87.411	176.974	445.664	304.922	2.045.010	12.795	87.411	87.411	176.974	445.664	304.922	2.045.010
104	92	4,00	5.976	47.209	47.209	89.039	214.528	148.795	961.487	5.976	47.209	47.209	89.039	214.528	148.795	961.487
			176.498	607.801	1.080.983	1.843.284	9.335.188	3.608.261	36.129.211	255.361	844.392	1.554.164	2.631.921	13.672.686	5.185.533	52.690.568

Quelle: eigene Berechnungen.

⁹⁶ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude in Szenario 1 und Szenario 2 bzw. Anzahl der jährlich zu sanierenden Mehrfamiliengebäude bis inkl. 2013

Tabelle 2-71: Szenarien der Energieeinsparung: Gegenüberstellung aller Sanierungsmaßnahmen Teil 2

A	Allgemeine	es				Szenario 1							Szenario 2			
ø HWB	[kWh/a]	Anzahl 97	Δ bei δ bzw.	Σ 2013 [kWh]	kumuliert bis 2013	Σ 2020 [kWh]	kumuliert bis 2020	Σ 2030 [kWh]	kumuliert bis 2030	Δ bei δ bzw.	Σ 2013 [kWh]	kumuliert bis 2013	Σ 2020 [kWh]	kumuliert bis 2020	Σ 2030 [kWh]	kumuliert bis 2030
Vor Sanier ung	Nach Sanier ung		nach 2013 bei MFG [kWh/a]		[kWh]		[kWh]		[kWh]	nach 2013 bei MFG [kWh/a]		[kWh]		[kWh]		[kWh]
	Dämmung der Außenwände															
199	110	55/82	645.491	1.936.472	3.872.944	6.454.907	35.501.987	12.909.814	135.553.042	968.236	2.904.708	5.809.416	9.682.360	53.252.981	19.364.720	203.329.563
126	70	18,00	55.784	365.549	365.549	756.036	1.927.494	1.313.873	8.900.463	55.784	365.549	365.549	756.036	1.927.494	1.313.873	8.900.463
104	58	4,00	22.379	174.075	174.075	330.729	800.692	554.521	3.598.094	22.379	174.075	174.075	330.729	800.692	554.521	3.598.094
			723.654	2.476.096	4.412.568	7.541.671	38.230.174	14.778.208	148.051.599	1.046.399	3.444.332	6.349.040	10.769.125	55.981.168	21.233.115	215.828.120
								Thermisch	e Sanierung							
199	67	55/82	961.808	2.885.424	5.770.847	9.618.078	52.899.431	19.236.157	201.979.647	1.442.712	4.328.135	8.656.271	14.427.118	79.349.147	28.854.235	302.969.470
126	42	18,00	83.496	545.544	545.544	1.130.019	2.883.442	1.964.982	13.320.486	83.496	545.544	545.544	1.130.019	2.883.442	1.964.982	13.320.486
104	36	4,00	33.118	257.275	257.275	489.099	1.184.570	820.276	5.324.281	33.118	257.275	257.275	489.099	1.184.570	820.276	5.324.281
			1.078.422	3.688.243	6.573.667	11.237.196	56.967.444	22.021.415	220.624.413	1.559.326	5.130.955	9.459.090	16.046.235	83.417.159	31.639.493	321.614.236
								Gesamts	sanierung							
199	46	55/82	1.113.107	3.339.321	6.678.641	11.131.069	61.220.878	22.262.137	233.752.443	1.669.660	5.008.981	10.017.962	16.696.603	91.831.317	33.393.206	350.628.665
126	29	18,00	96.112	630.175	630.175	1.302.958	3.321.307	2.264.076	15.335.288	96.112	630.175	630.175	1.302.958	3.321.307	2.264.076	15.335.288
104	25	4,00	38.642	300.648	300.648	571.143	1.382.630	957.565	6.212.908	38.642	300.648	300.648	571.143	1.382.630	957.565	6.212.908
			1.247.861	4.270.143	7.609.464	13.005.170	65.924.815	25.483.779	255.300.639	1.804.414	5.939.804	10.948.785	18.570.704	96.535.254	36.614.848	372.176.861

Quelle: eigene Berechnungen.

⁹⁷ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude in Szenario 1 und Szenario 2 bzw. Anzahl der jährlich zu sanierenden Mehrfamiliengebäude bis inkl. 2013

In den Zeilen von Tabelle 2-70 und Tabelle 2-71 sind wiederum zunächst die Ergebnisse für Einund Zweifamilienwohngebäude, dann für Mehrfamilienwohngebäude mit 3 bis 10 Wohnungen und zuletzt Mehrfamilienwohngebäude mit mehr als 10 Wohnungen für die gesamte Region Strudengau dargestellt. Diese Auflistung setzt sich für die einzelnen Sanierungsmaßnahmen fort.

In Tabelle 2-70 und Tabelle 2-71 werden zunächst allgemeine Daten der Klima- und Energie-Modellregion Strudengau aufgelistet. Die Anzahl der jährlich zu sanierenden Gebäude bei Ein- und Zweifamilienwohngebäuden beträgt in Szenario 1 55 Gebäude jährlich und in Szenario 2 82 Gebäude pro Jahr. Im Anschluss werden die Ergebnisse für die einzelnen Szenarien wiedergegeben.

Für jedes Szenario wird zunächst die Summe der jährlichen zusätzlichen Heizenergieeinsparung dargestellt. Für Wohngebäude trifft dieser Wert erst nach dem Jahr 2013 zu, da zuvor angenommen wird, dass in jeder Gemeinde in dem Zeitraum von 2011 bis einschließlich 2013 je ein Gebäude der beiden Mehrfamilienhaustypen saniert wird.

40.000.000 35.000.000 30.000.000 25.000.000 ■Tausch Fenster und Außentüren ■Dämmung der Kellerdecke 20.000.000 ■ Dämmung der Geschoßdecke ■ Dämmung der Außenwände ■Thermische Sanierung 15.000.000 Gesamtsanierung 10.000.000 5.000.000 0 Szenario 2 Szenario 1 Szenario 2 Szenario 1 Szenario 1 Szenario 2 Σ 2020 [kWh] Σ 2013 [kWh] Σ 2030 [kWh]

Abbildung 2-11: Szenarien der Energieeinsparung - Gegenüberstellung der Sanierungsmaßnahmen nach Einsparung in den Jahren 2013, 2020 und 2030

Quelle: eigene Berechnungen.

Somit ergibt sich für die Maßnahme "Gesamtsanierung" im Jahr 2013 im Szenario eine Gesamteinsparung von 4 GWh. Der jährliche, durch die Sanierungen generierte, Anstieg bewirkt im Jahr 2020 eine Einsparung von 13 GWh und im Jahr 2030 können durch die Sanierung sogar über 25 GWh eingespart werden. Werden die jährlichen Einsparungen kumuliert, so wird eine Gesamteinsparung von 2011 bis 2030 von 255 GWh ersichtlich. In Szenario 2 ergibt sich für die Jahre 2011 bis 2030 sogar eine Gesamteinsparung von 372 GWh.

In Abbildung 2-11 wird deutlich, wie sehr die Einsparung vom Sanierungsgrad der Gebäude abhängig ist. Besonders durch eine Gesamtsanierung des Gebäudebestandes können jährlich über 35 GWh eingespart werden.

Anschließend wurden die CO₂-Vermeidungskosten ermittelt, um zu erheben wieviel eine eingesparte Tonne CO₂ kostet. Für die Berechnung der Ein- und Zweifamilienwohngebäude wurden zunächst die Ergebnisse aus der Studie Tichler et al. (2010) verwendet, mithilfe derer das CO₂-Einsparungspotential für die gesamte Klima- und Energie-Modellregion Strudengau errechnet wurde. Für die Durchschnittsberechnung der CO₂-Vermeidungskosten von Treibhausgasemissionen der Ein- und Zweifamilienwohngebäude wurden nur die beiden Modellgebäude ohne Zubau verwendet. Folgende weitere Annahmen wurden getroffen:

- Lebensdauer der Sanierungsmaßnahme und Kreditlaufzeit werden auf 25 Jahre gesetzt.
- Analog zum Kalkulationszins wurde ein fixer Zinssatz von 5% über die gesamte Laufzeit angenommen.
- Die durchschnittlichen Energiekosten wurden mit 0,065 € bestimmt.⁹⁸

Für die Berechnung der gesamten CO_2 -Vermeidungskosten und des Einsparungspotentials wurden folgende Annahmen für Mehrfamilienwohngebäude beider Größenklassen, mit 3 bis 10 Wohnungen und mehr als 10 Wohnungen, getroffen:

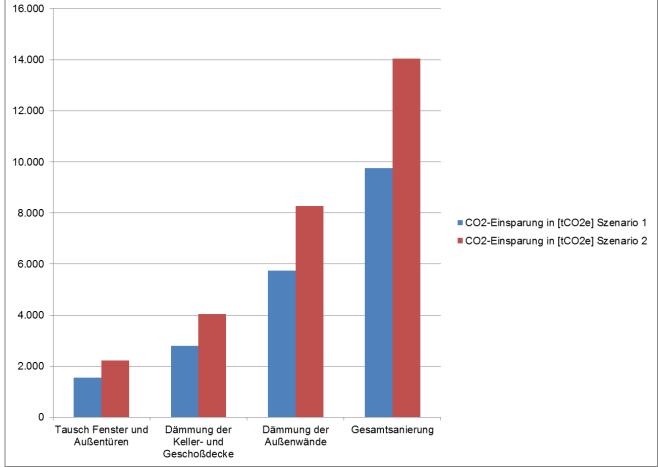
- Die Kosten für die Gesamtsanierung eines Mehrfamilienwohngebäudes (ab 3 Wohnungen) werden mit 210 €/m² angenommen.⁹⁹
- Die Gesamtsanierungskosten k\u00f6nnen prozentuell nach den Anteilen von Ein- und Zweifamilienwohngeb\u00e4uden auf die einzelnen Sanierungsma\u00dfnahmen "Tausch von Fenster und Au\u00dfent\u00fcren", "D\u00e4mmung der Keller- und obersten Gescho\u00dfecke" und "D\u00e4mmung der Au\u00dfenw\u00e4nde" aufgeteilt werden.
- Die für den 25%-Annuitätenzuschuss benötigten Vorgaben (zB Mindestdämmstärke, U-Werte, etc.) werden erreicht. Die Voraussetzungen für einen höheren Annuitätenzuschuss von 30% werden bei der Maßnahme "Dämmung der Außenwände" für beide Mehrfamilienwohngebäudetypen erreicht, bei den Maßnahmen "thermische Sanierung" und "Gesamtsanierung" wird ein 40%-Annuitätenzuschuss gewährt.
- Die CO₂-Einsparung wird für das Jahr 2030 berechnet, da hier die gesamten Sanierungen laut den beiden Szenarien fertig durchgeführt sein wird.

In der nachfolgenden Tabelle sind die Ergebnisse für die einzelnen Sanierungsmaßnahmen je Geäudeart dargestellt.

.

⁹⁸ Dazu wurde die Energiepreise verschiedener Heiztechnologien nach ihrem Anteil am Raumwärmemix gemittelt und ein durchschnittlicher Wirkungsgrad von 85% angenommen.

⁹⁹ Vgl. Tichler et al. (2010)


Tabelle 2-72: CO₂-Einsparungspotential der Klima- und Energie-Modellregion Strudengau bei den einzelnen Sanierungsmaßnahmen

Gebäude	CO ₂ -Einsparung	CO ₂ -Vermeidungs	kosten [€/t _{co2}]	CO ₂ -Einsparun	g gesamt [t _{co2}]
Gebaude	je Gebäude [t _{CO2}]	Ohne Förderung	Mit Förderung	Szenario 1	Szenario 2
		Tausch Fenster u	nd Außentüren		
1-2 Whg.	1,24	578	355	1.367	2.051
3-10 Whg.	1,63	833	563	119	119
>10 Whg.	3,54	1.060	733	53	53
Summe				1.540	2.224
	Dämm	ung der Keller- und d	bersten Geschoß	decke	
1-2 Whg.	2,23	99	-4	2.459	3.688
3-10 Whg.	3,29	200	89	240	240
>10 Whg.	6,82	319	178	102	102
Summe				2.802	4.032
		Dämmung der A	Außenwände		
1-2 Whg.	4,59	-24	-97	5.062	7.592,78
3-10 Whg.	6,37	95	-17	465	465
>10 Whg.	13,58	173	47	204	204
Summe				5.730	8.261
		Gesamtsaı	nierung		
1-2 Whg.	7,79	72	-25	8.591	12.886,22
3-10 Whg.	10,97	247	49	801	801
>10 Whg.	23,45	359	117	352	352
Summe				9.743	14.039

Quelle: eigene Berechnungen.

Werden in der gesamten Region Strudengau die Gebäude wie in den Szenarien angenommen gesamtsaniert, so verringert sich in Szenario 1 der CO₂-Ausstoß um 9.700 Tonnen. In Szenario 2 steigt diese Reduktion sogar auf 14.000 Tonnen. Auch hier wird deutlich ausgewiesen, dass die Reduktion der Treibhausgasemissionen wesentlich vom Sanierungsgrad abhängig ist. Werden beispielweise nur die Kellerdecke und die oberste Geschoßdecke bei allen Gebäuden der Region Strudengau saniert, so können lediglich 2.800 bzw. 4.000 t_{CO2} reduziert werden.

CO₂-Einsparungspotential **Abbildung** 2-12: der Region Strudengau Einzelnen bei den Sanierungsmaßnahmen im Jahr 2030 16.000

Quelle: eigene Berechnungen.

In Abbildung 2-12 wird nocheinmal die CO₂-Einsparung im Jahr 2030 – nach Durchführung der Sanierung gemäß der verschiedenen Szenarien – dargestellt. Auch hier wird einerseits deutlich, dass grundsätzlich durch eine Gesamtsanierung die größt mögliche CO₂-Einsparung erreicht werden kann und andererseits, dass eine Erhöhung der Sanierungsrate bei Ein- und Zweifamilienwohngebäuden auf 3% höhere Reduktionen der Treibhausgasemissionen generiert.

3 Strategien, Leitlinien und Leitbilder in der Energieregion Strudengau

Die Energieregion Strudengau GmbH behandelt bereits seit geraumer Zeit aktuelle Themen im Bereich alternativer und erneuerbarer Energie. Ein Schwerpunkt liegt dabei auch auf der Initiierung von Forschung und Entwicklung auf diesem Gebiet. Die in der Vergangenheit gesetzten Aktivitäten der Energieregion reichen von der Etablierung einer Energie Card in der Region über die Gestaltung von Bürgerinformationsveranstaltungen zum Thema Energie bis hin zur Begleitung des EGEM-Prozesses in den 18 Gemeinden der Energieregion. Diese vergangenen Aktivitäten bieten eine gute Basis für die Weiterverfolgung und den Ausbau des Leitbildes in der Energieregion. Es kann auf Bestehendes aufgebaut werden. Die nachfolgenden Unterkapitel des vorliegenden Umsetzungskonzeptes beschäftigen sich mit den bereits bestehenden Leitbildern, Weiterentwicklung dieser, sowie den damit verbundenen energiepolitischen Zielen in der Energieregion Strudengau. Zudem findet sich auch eine kurze Managementstrukturen in der Region, die ein Voranschreiten der Umsetzungsprojekte sowie eine Weiterverfolgung des ganzheitlichen Energie-Gedankens nach Abschluss des Projekts gewährleisten.

3.1 Inhalt bereits bestehender Leitbilder und Weiterentwicklung dieser

Die Energieregion Strudengau besteht bereits seit dem Jahr 2007. Insgesamt 17 Gemeinden haben sich zu diesem regionalen Energieverband zusammengeschlossen. Die Energieregion Strudengau hat sich zu einem klaren Bekenntnis zum Klimaschutz ausgesprochen. Auf Grund der vielen Vorprojekte und Erfahrungen im Bereich Erneuerbare Energien, haben wir uns im Rahmen des Projektes Klima und Energiemodellregion, weiterhin dazu entschlossen den Weg hin zu einer nachhaltigen Entwicklung und CO₂-neutralen Region fort zu führen. Zu Beginn der Projektarbeit wurden im Herbst 2011 alle Gemeinden und das Leaderbüro der Region besucht, und das Klimaund Energie-Modellregion-Projekt vorgestellt und mit Vertretern der 18 Gemeinden (Bürgermeister, Amtsleitung, Leader) ein ausführliches Gespräch geführt. Dabei wurden der Ablauf des Projektes, die Erwartungen der Gemeinden, das Machbare und das Mögliche eines regionalen Energiekonzepts besprochen. Es wurden einzelne Schwerpunkte im Energiebereich festgelegt und Erwartungen der einzelnen Gemeinde gesammelt. Für jede Gemeinde wurde eine Ansprechperson ausgewählt, welche den verlängerten "Arm" der Energieregion-Gemeinde für die Projektarbeit bilden. Um die gesammelten regionalen und kommunalen Ideen im Rahmen des regionalen Energiekonzepts zu einem gemeinsamen Leitbild verschmelzen zu können, wurde das bereits bestehende Leitbild erweitert. Der entwickelte Maßnahmenplan samt strategischen Zielen ist integraler Bestandteil des Leitbildes und im Kapitel 7 nach zu lesen. Darüber hinaus wurden weitere strategische Ziele und Meilensteine der Klima- und Energie-Modellregion, mittels Gemeinderatsbeschluss in allen 18 Gemeinden angenommen, und sind daher als verbindliche Maßnahmen an zu sehen.

Der Text der Gemeinderatsbeschlüsse lautete wie folgt:

Der Gemeinderat der Gemeinde ... beschließt nachstehen folgende Umsetzungsziele und -maßnahmen der Gemeinde ...

- 1. Konzept-Schwerpunkte und Umsetzungsreihenfolge
 - 1. Gebäude Sanierung
 - 2. Effizienzsteigerung (d.h. der Austausch veralteter, ineffizienter Heizungen) und Substitution ("ersetzen") von fossilen Brennstoffen (Erdöl, Erdgas, Kohle,...)
 - 3. Einarbeitung in das vernetzte und integrierte Energiesystem (SYNERGIO = ganzheitliche Energiebetrachtung der gesamten Region)
- 2. Rahmenbedingungen für die Sanierung der öffentlichen Gebäude in der Gemeinde ...
 - Zuerst Sanieren, um somit die Wärmeverluste über die Gebäudehülle einzuschränken und anschließend
 - Die Heizungsanlage modernisieren und/oder fossile Energiebereitstellung durch erneuerbare Energiebereitstellung zu substituieren.
- 3. Effizienzsteigerung aller "Altanlagen", dann aller "Bestandsanlagen" (keine Neuanlagen)
 - Alle "Altanlagen" Heizöl" extraleicht (HE) und leicht (HL), Erdgas (EG), und Flüssiggas (FG) und (Stein-) Kohle (SK) werden auf Erneuerbare z.B. Pellets (HP) substituiert
 - Alle "Altanlagen" Scheitholz (SH) werden zu Hackgutheizungen substituiert
 - Jeweils 50 % der "Bestandsanlagen" HE, HL, EG, FG und SK werden zu HP substituiert
 - 50 % der SH-"Bestandsanlagen" werden zu Hackgutheizungen substituiert
- 4. Aktivierung der Energiebuchhaltung

Eine der wesentlichen zukünftigen Herausforderungen der Kommunen liegt im Energiebereich. Die Aufgaben und gesteckten Ziele im Energiebereich werden in der Strudengauer Klima- und Energie-Modellregion nur im Verbund zu meistern sein, daher ist es eine der zukünftigen Herausforderungen, die erhobenen und erarbeiteten Ziele im Energiebereich so rasch wie möglich zu erreichen und um zu setzen. Folglich liegt das gemeinsame Leitbild der Region ganz klar auf dem Themenbereich "Energie". Das Thema "Energie" wird in der Region hinsichtlich der Steigerung der Umwandlungseffizienz der eingesetzten Energie und des Umstiegs auf alternative und heimische Energieträger bearbeitet. Dabei gewährleistet eine Kooperation von öffentlicher Hand, privaten Firmen und Dienstleistern sowie den Bürgern eine nachhaltige wirtschaftliche Entwicklung in der Region. Es soll eine langfristige Basis für zukünftige Energieeinsparungen auf regionaler Ebene geschaffen werden.

Durch die Umsetzung verschiedener Projekte sowie Veranstaltungen ist bereits in der Vergangenheit eine stetige Weiterentwicklung der Energieregion Strudengau erreicht worden. Nachfolgend werden die wichtigsten Projekte mit ihren Inhalten präsentiert, denn diese stellen zum Teil eine wesentliche Basis für die im vorliegenden Umsetzungskonzept definierten Umsetzungsmaßnahmen dar. Somit ist dieses Umsetzungskonzept nicht nur die Neuentwicklung von Zielen und Leitideen für die Energieregion, sondern gleichzeitig auch die Weiterentwicklung von Ergebnissen und Gedanken aus vorangegangenen Projekten.

Als wesentliche Basis für dieses Umsetzungskonzept sowie für die darauf aufbauende Definition der Umsetzungsmaßnahmen dient die im Jahr 2009 abgeschlossene EGEM-Erhebung für die 18 Gemeinden der Energieregion. Bereits diese Erhebung zeigte, dass in der Region Strudengau bis 2030 rund 30 % Energie durch thermische Sanierung eingespart werden können. Zusätzlich können durch einen Umstieg auf erneuerbare Energieträger in der Wärmeproduktion weitere 20 % eingespart werden. Für die Realisierung dieses Potentials ist ein Investitionsvolumen in Höhe von rund 300 Mio. € notwendig. Mithilfe der EnergieCard Strudengau soll dieses Geld in der Region bleiben und den heimischen Unternehmen zu Gute kommen.

Die EnergieCard ist ein Unikum der Region Strudengau und für jede Bürgerin und jeden Bürger der Energieregion Strudengau kostenlos erhältlich. Zahlreiche Unternehmen in der Region, quer durch alle Branchen treten als Partnerunternehmen auf und stehen interessierten Personen zum Thema "Energie" mit Rat und Tat zur Seite. Bei den Unternehmen handelt es sich unter anderem um Planungsbüros, Baumeister und Installateure, die über besonderes Know-How im Energiebereich verfügen. Unter anderem wurde im Rahmen der EnergieCard-Aktion eine Broschüre erstellt, die über die Partnerunternehmen informiert. Ziel der EnergieCard ist die Vernetzung des interessierten Personenkreises mit jenen Unternehmen der Region, die Privatpersonen bei der Umsetzung ihrer Projektideen im Bereich "Energie sparen" unterstützen.

Um die Bürgerinnen und Bürger der Energieregion am Laufenden über die Tätigkeiten der Energieregion Strudengau GmbH zu halten, erscheint seit 2008 das Magazin der Energieregion Strudengau. Das Magazin hat sich nicht nur zum Ziel gesetzt, Informationen über neue Energietechnologien aufzubereiten, sondern der Bevölkerung auch umgesetzte Projekte von engagierten Bürgerinnen und Bürgern zu präsentieren. In diesem Zusammenhang werden beispielsweise durchgeführte Sanierungsprojekte hervorgehoben. Somit gelingt es innerhalb der Bevölkerung Energieregion Strudengau die zu sensibilisieren Erfahrungsaustausch zum Thema "Energie" zwischen den Menschen anzuregen. Das Magazin der Energieregion ist demnach ein wichtiges Werkzeug zur Bewusstseinsbildung. Im Jänner 2012 erschien eine neue Ausgabe des Magazins der Energieregion Strudengau. Diese Ausgabe wurde über die Regionalzeitung "Tipps Perg" versendet, um den Kreis der Leser zu vergrößern und sicherzustellen, dass jeder Haushalt in der Energieregion ein Exemplar des Magazins erhält. Aufgrund des so erreichten sehr großen Leserkreises hat das Magazin wesentliche Bedeutung für die Information sowie Bewusstseinsbildung der Bevölkerung in der Region.

Es kann festgestellt werden, dass die Energieregion Strudengau früh erkannt hat, dass die Bürgerinnen und Bürger sowie die regionalen Unternehmen wesentliche Akteure im Rahmen der energetischen Optimierung der Region darstellen. Um eine bessere Vernetzung dieser Akteure zu gewährleisten, wurde am 15. und 16. Oktober 2010 die 1. Energieveranstaltung in Perg abgehalten. Dabei drehte sich 2 Tage alles rund um das Thema Energie unter den Aspekten der Energieeffizienz, des Klimaschutzes, der Ökologie, der Nachhaltigkeit, des Bauens, der Beratung und der Regionalität. Bei dieser Veranstaltung präsentierten auch über 38 Unternehmen quer durch alle Branchen ihre möglichen Leistungen und standen den Besuchern Rede und Antwort auf ihre Fragen zum Thema "Energie". Zudem hatten die Bürgerinnen und Bürger auch die Möglichkeit an stündlich stattfindenden Fachvorträgen zu Klimaschutzthemen teilzunehmen. Daran wird abermals deutlich, dass in der Energieregion bereits in der Vergangenheit Anstrengungen betrieben wurden, um den "Energiegedanken" innerhalb der Bevölkerung zu verbreiten und gleichzeitig Hilfestellungen zu leisten, wenn es um die Umsetzung von privaten Projektvorhaben des Einzelnen geht.

3.2 Energiepolitische Ziele und Prioritäten in der Energieregion Strudengau

Im Vordergrund der Bestrebungen der Energieregion Strudengau steht die Abstimmung der Energienachfrage von privaten Haushalten, Gewerbe, Industrie und landwirtschaftlichen Betrieben in der Region mit regionalen Energieversorgern. Die Energieerzeugung auf Basis regionaler, erneuerbarer Energieressourcen soll dabei mit der zukünftigen Nachfrage akkordiert werden. Mit diesem Leitgedanken und der damit verbundenen Umsetzung von verschiedenen Projekten will die Energieregion Strudengau Vorbild für andere Regionen sein. Konkret leiten sich aus diesem Leitgedanken folgende Ziele der Energieregion Strudengau ab:

- Steigerung der Energieeffizienz
- Steigerung der Eigenenergieversorgung und gleichzeitige Senkung der Fremdversorgungsabhängigkeit
- Nutzung heimischer Ressourcen zur Stärkung der regionalen Wertschöpfung
- Stärkung regionaler Wirtschaftszusammenhänge durch die Nutzung erneuerbarer und regional verfügbarer Energieträger
- Geringe Abhängigkeit zur Sicherung und zum Ausbau der wirtschaftlichen Prosperität
- Näherung hin zu einem Nachhaltigkeitsgedanken in der Energiewirtschaft
- Umsetzung der Konzeptschwerpunkte in der vorgesehenen Reihenfolge
 - Gebäudesanierung
 - Effizienzsteigerung und Substitution von fossilen Brennstoffen im Bereich Raumwärme und Warmwasser
 - Einarbeitung in das vernetzte und integrierte Energiesystem (SYNERGIO)
- Schaffung geeigneter Rahmenbedingungen für die Sanierung der Gebäude in den Gemeinden der Region
- Aktivierung der Energiebuchhaltung GEBLI in den Gemeinden der Energieregion Strudengau

Die Erreichung dieser energiepolitischen Ziele wird auch nach Auslauf der Unterstützung durch den KLIEN verfolgt. Da die Energieregion Strudengau GmbH bereits fest in der Region verankert ist, wird es auch zukünftig eine Anlauf- und Koordinationsstelle für Projektideen geben.

Von besonderer Bedeutung bei der Umsetzung von Maßnahmen zur Erreichung von Zielen in der Energieregion Strudengau ist das Setzen von Prioritäten. Am Beginn einer Energieeffizienzsteigerung im Gebäudebereich sollte die thermische Althaussanierung stehen, um Wärmeverluste zu vermindern. Danach erst wird ein Tausch bzw. eine Modernisierung der Heizanlage als sinnvoll erachtet.

Im Zentrum der energiepolitischen Ziele und Prioritäten in der Region Strudengau stehen auch die optimierte Nutzung von erneuerbarer Energie sowie die Nutzung von Synergien. Diese Leitgedanken wurden mit dem Projekt SYNERGIO (Synergetische Energiekonzepte für Regionen) einen Schritt weiter zur Umsetzung getragen. Dem Projekt liegt die Idee einer nachhaltigen und effizienten Nutzung von erneuerbaren Energieressourcen als Schlüssel zur Energiewende zu Grunde. Als Basis dafür dient die Beachtung der Wechselwirkungen des Energieträgerbedarfs, der lokalen Energieverbrauchsstruktur sowie der vorhandenen und potentiellen Energieressourcen. Zudem müssen auch Konkurrenznutzungen identifiziert und ausgelotet werden, um eine nachhaltige Versorgung der Region mit Energieressourcen zu gewährleisten. Im Rahmen des Projekts SYNERGIO wurde eine solche umfassende energetische Betrachtung einer Region am Beispiel der Energieregion Strudengau gezeigt. Es wurde ein synergetisches Energiekonzept erarbeitet, dessen Ziel es ist, den größtmöglichen Nutzen für die Einwohner, energieintensive

Großbetriebe sowie auch für die lokale Land- und Forstwirtschaft zu erzielen. Besonderes Augenmerk liegt dabei auch auf der Beachtung der Wechselwirkungen zwischen konkurrierenden Stoffnutzungsszenarien. Die im Rahmen des Projekts erarbeitete Methodik wurde in ein Software-Tool, dem "SYNERGIE-PLANER" überführt. Dieses Tool steht der breiten Öffentlichkeit kostenlos zur Verfügung und ermöglicht das Aufzeigen von optimalen Energielösungen für Regionen, Ortskerne, Städte und/oder zersiedelte Gebiete. Das Tool ist so konzipiert, dass es konkrete Vorschläge für vernetzte Energieversorgungs- und -aufbringungsszenarien auf Basis der regional spezifischen Rahmenbedingungen liefert.

Die vorangegangenen Ausführungen zeigen, dass die Entwicklung energiepolitischer Ziele und Leitbilder in der Region Strudengau bereits weit fortgeschritten ist. Zudem wurde mit SYNERGIO ein Instrument entwickelt, welche die nachhaltige Umsetzung dieser Leitbilder durch konkrete Maßnahmen unterstützt. Mit dem vorliegenden Umsetzungskonzept soll eine langfristige Verankerung der energiepolitischen Ziele in der Region Strudengau durch die Realisierung von konkreten Umsetzungszielen weiter forciert werden.

3.3 Managementstrukturen zur Umsetzung der Strategien und Leitbilder in der Energieregion Strudengau

Durch die Gründung der Energieregion Strudengau GmbH wurde in der Region bereits ein wesentlicher Schritt zur Implementierung von Managementstrukturen geschaffen, die die Umsetzung der Strategien und Leitbilder vorantreiben. Die Energieregion Strudengau GmbH unter Geschäftsführung von Herrn Mag. Josef Reisinger hat bereits in der Vergangenheit bevor die Region Strudengau zur Klima- und Energie-Modellregion wurde, verschiedenste Anstrengungen betrieben, um den Energiespargedanken in der Region zu etablieren. Dazu wurde unter anderem ein Netzwerk von regionalen Unternehmen unterschiedlichster Branchen aufgebaut, die mit ihrem Know-how aus den verschiedensten Bereichen zur Umsetzung von Energiesparprojekten oder Projekten zur Forcierung des Einsatzes von erneuerbaren Energieträgern beitragen können. Diese Unternehmen sind unter dem Schirm der EnergieCard zusammengefasst. Dies erleichtert dem interessierten Bürger oder der interessierten Bürgerin das Finden und die Kontaktaufnahme mit Firmen, die das jeweilige Projektvorhaben unterstützen. Im Büro der Energieregion Strudengau GmbH in Münzbach kann zudem eine Energieberatung in Anspruch genommen werden.

Des Weiteren werden von der Energieregion Strudengau GmbH zahlreiche Veranstaltungen organisiert, die sich sowohl an die BürgerInnen als auch an die Gemeinden oder Gewerbebetriebe richten. Auf der einen Seite geht es bei derartigen Veranstaltungen um die Verbreitung von Informationen zum Thema Energie, auf der anderen Seite bieten diese Veranstaltungen den TeilnehmerInnen die Möglichkeit zum Erfahrungsaustausch oder zur Vernetzung. Auf diese Weise wird Know-how innerhalb der Region weitergetragen. Mit dem vorliegenden Umsetzungskonzept und den darin vorgesehenen Umsetzungsmaßnahmen, soll nun erreicht werden, dass das Knowhow der Energieregion Strudengau auch überregional bekannt und weitergetragen wird.

Ein wesentlicher Vorteil, der sich durch die bereits seit längerer Zeit existierende Energieregion Strudengau GmbH ergibt ist, dass diese in der Region bereits verankert ist und Erfahrungen bei der Umsetzung von Energieprojekten sowie bei bewusstseinsbildenden Maßnahmen hat. Außerdem wird die Energieregion Strudengau GmbH auch weiterhin bestehen und auch nach

Ablauf der Projektbearbeitungszeit die weiterführende Umsetzung der prioritären Umsetzungsmaßnahmen koordinieren.

Zusammenfassend muss festgehalten werden, dass die Energieregion Strudengau GmbH den Hauptbestandteil der bestehenden Managementstrukturen in der Region darstellt. Ein weiterer fixer Bestandteil der Managementstrukturen ist das Leaderbüro der Region, mit dem die Energieregion Strudengau vor allem bei der Organisation in enger Zusammenarbeit steht. Zu den prioritären Managementtätigkeiten zählen unter anderem die Herausgabe des Energieregionsmagazins sowie die Vernetzung zwischen Bevölkerung und Unternehmen unter dem Schirm der EnergieCard.

4 Stärken-Schwächen-Analyse (SWOT-Analyse) für die Energieregion Strudengau

Die SWOT-Analyse für die Energieregion wird mit dem Fokus auf energiestrategische Ziele durchgeführt. Grundsätzlich ist die Stärken-Schwächen-Analyse ein betriebswirtschaftliches Instrument, das eine Organisation in interner Sicht auf Stärken (strenghts) und Schwächen (weaknesses) sowie in externer Sicht auf Chancen (opportunities) und Risiken (threats) untersucht. Nach einer Anpassung des Konzepts der SWOT-Analyse auf die Anforderungen einer Regionalanalyse kann die Stärken-Schwächen-Analyse für die Energieregion Strudengau durchgeführt werden.

Die Stärken-Schwächen-Analyse für eine Region bezieht sich insbesondere auf die regional vorhandenen Strukturen. Im Fall der Klima- und Energie-Modellregion Strudengau stehen vor allem die energetischen Strukturen im Vordergrund. Die energetischen Strukturen verstehen sich dabei als Querschnittsmaterie aus den demografischen, agrarischen und wirtschaftlichen Strukturen innerhalb einer Region. Deshalb müssen all diese Faktoren in die SWOT-Analyse miteinfließen. Für die Durchführung der SWOT-Analyse existieren zu beantwortende Fragen, die den Rahmen für die Stärken-Schwächen-Analyse darstellen.

Stärken

Was macht die Region besser als andere Regionen?
Worin liegen die Ursachen dieser Erfolge der Region?
In welchen Bereichen ist die Region besonders stark?
Welche Synergiepotentiale können durch neue Strategien besser genutzt werden?

Schwächen

Was macht die Region schlechter als andere Regionen? Worin liegen die Ursachen dieser Misserfolge der Region? Wie können diese Schwächen in Stärken verwandelt werden? In welchen Bereichen ist die Region besonders schwach? Ist es sinnvoll, diese Schwächen zu Stärken zu entwickeln?

Chancen

Welche Möglichkeiten bieten sich für die Region in gesellschaftlicher, wirtschaftlicher und ökologischer Hinsicht?

Welche regionalen, nationalen, europäischen und internationalen Trends haben einen fördernden Einfluss auf die Entwicklung der Region?

Welche rechtlichen, politischen oder technologischen Entwicklungen können sich positiv auf die Region auswirken?

Risiken

Welche Gefahren zeichnen sich in gesellschaftlicher, wirtschaftlicher und ökologischer Hinsicht ab?

Welche regionalen, nationalen, europäischen und internationalen Trends gefährden die Entwicklung der Region?

Welche rechtlichen, politischen oder technologischen Entwicklungen können sich negativ auf die Region auswirken?

Zusätzlich zum dargestellten Rahmen in Form von Fragen, müssen auch folgende Kombinationsmöglichkeiten innerhalb der regionalen SWOT-Analyse Beachtung finden:

- Kombination von Stärken & Möglichkeiten: Wie können die Stärken genutzt werden, um die Chancen zu realisieren?
- Kombination von Stärken & Risiken: Wie können die Stärken verhindern, dass Risiken eintreten?
- Kombination von **Schwächen & Möglichkeiten**: Wie können die Schwächen zu Stärken entwickelt werden, um die Chancen zu nutzen?
- Kombination von **Schwächen & Risiken**: Wie können die Schwächen in Stärken verwandelt werden, um die Region vor Risiken zu bewahren?

Aus diesen Fragen ergeben sich letztendlich Umsetzungsmaßnahmen und -strategien mit denen Möglichkeiten ausgenutzt und Risiken minimiert werden können. Mit derartigen Maßnahmen sollen unter anderem Chancen realisiert werden, Schwächen in Stärken verwandelt und Risiken vermieden werden.

Stärken:

- Gut etablierte Anlauf- und Koordinationsstelle für Energieprojekte sowie Bewusstseinsbildung und Veranstaltungsorganisation in Form der Energieregion Strudengau GmbH.
- Zahlreiche Gewerbebetriebe, die im Bereich Gas, Wasser, Heizung sowie Bauen und Sanieren mit ihrem Know-how zur Verfügung stehen.
- Die EnergieCard als Netzwerk von Unternehmen, die wesentlich zum Erfolg der Umsetzungsmaßnahmen in der Region beitragen.
- Es bestehen bereits konkrete energiepolitische Leitbilder und Ziele.
- Es wurden bereits in der Vergangenheit zahlreiche Bemühungen und Projekte zur Verbesserung der Energiesituation in der Region durchgeführt (z.B.: SYNERGIO, EGEM).
- Regelmäßige Bürgerinformation und Einbeziehung durch bewusstseinsbildende Maßnahmen.
- Im Vergleich zu Oberösterreich bzw. dem restlichen Mühlviertel ist die installierte Leistung an PV-Anlagen in der Region Strudengau bereits hoch.
- Die Bevölkerung ist in der Region jünger im Vergleich zu Oberösterreich.
 Humanressourcen können genutzt werden.

Schwächen:

- Bis dato keine Konzepte zur Erreichung der gesteckten energiepolitischen Ziele vorhanden.
- Die Landwirtschaft spielt im Rahmen der energiepolitischen Ziele eine eher untergeordnete Rolle.
- Die Region Strudengau ist hinsichtlich ihrer Struktur stark heterogen. Im Süden bestehen zahlreiche gut etablierte Gewerbebetriebe, der Norden hingegen ist stark landwirtschaftlich geprägt.
- Diese Heterogenität kann genutzt werden, falls es gelingt Synergien aufzubauen bzw. die unterschiedlichen Problemfelder gleichermaßen anzusprechen.
- Bisher starker Fokus auf private Haushalte bei Energiethemen. Gewerbe sowie Landwirtschaft müssen zukünftig stärker eingebunden werden.
- Das Interesse der Gemeinden an weiteren Energieprojekten aktiv teilzunehmen sinkt in der Region aufgrund der bereits zahlreich durchgeführten Projekte und Erhebungen.

Chancen:

- Das Netzwerk der unter der EnergieCard zusammengefassten Unternehmen bietet die Möglichkeit spezielle Aktionen und/oder Angebote für EnergieCard Inhaber zu etablieren, die die Umsetzung von energierelevanten Projekten durch Privathaushalte fördern.
- Die zahlreich in der Region vorhandenen Biomasse-Nahwärmeanlagen bieten eventuell Potential mit KWK-Technologien aufgerüstet zu werden. Dazu muss allerdings eine Potentialerhebung durchgeführt werden.
- Die junge Bevölkerungsstruktur bietet für die ansässigen Gewerbebetriebe die Möglichkeit Fachkräfte direkt aus der Region zu rekrutieren und diese auszubilden.
- Aufgrund des hohen Anteils an Ackerfläche in der Region, auf der teilweise Gemüse kultiviert wird, besteht die Option einer energetischen oder auch stofflichen Verwertung der Ernterückstände. Auch dies bedarf einer fundierten Potentialerhebung. Eventuell kann sich in diesem Zusammenhang auch eine Zusammenarbeit mit dem in Naarn ansässigen Unternehmen Machland ergeben.
- Aufgrund der EGEM-Erhebung und Durchführung von bewusstseinsbildenden Maßnahmen ist die Bevölkerung der Region bereits in Bezug auf Energiethemen sensibilisiert. Dies bietet Ansatzpunkte für die weitere Verfolgung der energiepolitischen Ziele in der Region.

Risiken:

- Enger finanzieller Spielraum der Gemeinden kann die Umsetzung von Energieprojekten verzögern oder sogar verhindern, obwohl seitens der Bürgermeister reges Interesse an der Umsetzung von Projekten besteht.
- Zu geringer Einbezug der Landwirtschaft und der landwirtschaftlichen Ressourcenpotentiale bis dato. Die Landwirtschaft wird zukünftig eine noch stärkere Rolle als Rohstofflieferant einnehmen. In der Energieregion Strudengau könnten demnach innovative Ansatzpunkte für eine energetische und/oder stoffliche Verwertung von agrarischen Rohstoffen gefunden werden.
- Widerstand der EnergieCard Unternehmen, wenn es um die Schaffung von Angeboten und Leistungen exklusiv für EnergieCard Inhaber geht.
- Ein weiteres wesentliches Risiko stellt die Nicht-Erreichung der energiepolitischen Ziele aufgrund von fehlenden Konzepten dar.

Die Stärken-Schwächen-Analyse zeigt, dass in der Region Strudengau bereits eine gute Basis für weitere Tätigkeiten im energetischen Bereich vorhanden ist. Allerdings müssen auch noch weitere Anstrengungen betrieben werden, um gewisse Bereiche nicht aus den Augen zu verlieren. So müssen beispielsweise noch weitere Bemühungen angestrebt werden, um auch die Potentiale der Landwirtschaft auszuschöpfen. Des Weiteren wird es notwendig sein, das Interesse der Gemeinden an der Mitwirkung von Projekten im Bereich der Energienutzung weiter zu wahren. Dafür müssen Projekte gelingen, die einen deutlichen Mehrwert für die Gemeinden bringen, sei es durch Förderungen oder durch Einsparungen.

5 Partizipation, Vernetzung und Bürgerbeteiligung im Rahmen der Tätigkeiten der Energieregion Strudengau

Bürgerbeteiligung und -vernetzung wird in der Region Strudengau nicht nur im Bereich Energie für essentiell erachtet. Die jährlich stattfindende Strudengauer Messe ist ein Beispiel für die intensive Vernetzung von Gewerbe und BürgerInnen. Bei der Strudengauer Messe beteiligen sich zwar vornehmlich Unternehmen aus dem Energiebereich, aber trotzdem soll die Bedeutung der Strudengauer Messe als Venetzungsinitiative zwischen Unternehmen im Bereich Energie und den BürgerInnen ausgebaut werden, da erkannt wurde, dass diese Veranstaltung jedes Jahr regen Zulauf erfährt und sich somit bestens als Instrument zur Bewusstseinsbildung und Bürgerbeteiligung eignet.

Des Weiteren wurde in den Gemeinden der Energieregion Strudengau bereits eine EGEM-Erhebung durchgeführt. Im Rahmen dieser wurden Veranstaltungen für die TeilnehmerInnen organisiert. Diese dienten im Wesentlichen der Information. Bei der Abschlussveranstaltung im Jahr 2009 wurden die Ergebnisse einer breiten Öffentlichkeit präsentiert. Auch im Jahr 2009 wurde eine Informationsveranstaltung zum Thema Photovoltaik in der Energieregion abgehalten. Im Oktober 2010 fand eine 2-tägige Energieveranstaltung in Perg statt, bei der unter anderem eine Leistungsschau der EnergieCard-Partnerunternehmen stattfand. Außerdem konnte sich die interessierte Öffentlichkeit bei unterschiedlichen Vorträgen von Experten zu den Themen Energie, Ökologie und Klimaschutz weiterbilden. Dies sind nur Beispiele, wie die Bevölkerung in der Region in die Tätigkeiten der Energieregion Strudengau eingebunden wird. Auch das bereits angesprochene Magazin der Energieregion sowie die EnergieCard sind Instrumente der Bürgerbeteiligung. Nach Auskunft des Geschäftsführers der Energieregion Strudengau GmbH werden derartige Veranstaltungen auch immer gern und zahlreich in Anspruch genommen.

Zudem ist nicht nur die Vernetzung der Energieregion GmbH mit den BürgerInnen gegeben, sondern diese steht auch in regem Kontakt mit den Gemeinden und den EnergieCard Partnerunternehmen. Es zeigt sich, dass in der Energieregion bereits viel Erfahrung im Bereich der Bürgerbeteiligung besteht. Diese Erfahrungen können genutzt werden, um auch im derzeit laufenden Projekt zur Klima- und Energie-Modellregion die Vernetzung und Bürgerbeteiligung zu forcieren.

Im Jänner 2012 ist wieder eine Ausgabe des Energieregion-Magazins herausgegeben worden. Diesmal werden in dem Magazin unter anderem die EnergieCard-Unternehmen vorgestellt, das Projekt "Mühlviertler Ressourcenplan" mit den wesentlichen Ergebnissen vorgestellt sowie eine Information zum Projekt "Klima- und Energie-Modellregion Strudengau" präsentiert. Des Weiteren wird auch der Ausstieg aus Atomstrom behandelt. Besonders hervorzuheben ist in dieser Ausgabe des Energieregionsmagazins die Ankündigung der "Energieade 2012". Dabei handelt es sich um eine Initiative zur Prämierung von Projekten im Bereich der erneuerbaren Energien und der Energieeffizienz. Teilnehmen können sowohl Einzelpersonen als auch Unternehmen sofern diese ein Projekt im Bezirk umgesetzt haben, das den angesprochenen Themenbereich adressiert. Als Einsendeschluss wurde der 30. Juni 2012 festgelegt. Im Jahr 2010 war das Siegerprojekt der "Energieade" ein von der Firma Biokompakt entwickelter Heizkessel zur Verbrennung von Landschaftspflegeheu, das aufgrund seiner Beschaffenheit nicht als Viehfutter geeignet ist. Die "Energieade" ist nicht nur ein wichtiges Instrument im Bereich der Partizipation und

Bürgerbeteiligung in der Region, sondern trägt mitunter dazu bei, dass innovative Projektideen in der Region entwickelt und auch umgesetzt werden. Es werden auch jene Menschen vor den Vorhang geholt, die besondere Leistungen im Bereich der erneuerbaren Energieträger und der Energieeffizienz erbracht haben.

6 Ergebnisse aus dem Kennzahlen-Monitoring und darauf aufbauende Prognosen für die Projektlaufzeit und bis 2020

Das nachfolgende Kapitel beschreibt die Ergebnisse des Kennzahlen-Monitorings. Die Energieverbrauchsstruktur von Haushalten, Gewerbe und Industrie sowie Landwirtschaft wurde in der Region Strudengau bereits im Rahmen einer EGEM-Erhebung untersucht. Eine Zusammenfassung der Ergebnisse dieser Erhebung findet sich in Kapitel 1.6 des vorliegenden Umsetzungskonzepts. Die Ergebnisse des Kennzahlen-Monitorings bilden nur den Energieverbrauch des öffentlichen Sektors, sprich der Gemeinden in der Region ab.

Zur Erhebung wurde das Kennzahlen-Monitoring an die insgesamt 18 Gemeinden der Region zum Ausfüllen gesendet. Als sich ein sehr schwacher Rücklauf abzeichnete, wurden folgende Maßnahmen ergriffen, um diesen voranzutreiben:

- Ausschicken eines Reminder e-mails
- Telefonische Rückfrage bei den zuständigen Personen in den einzelnen Gemeinden
- Detaillierte Erklärung bezüglich der Angaben im Rahmen des Kennzahlen-Monitorings

Schlussendlich konnte ein Rücklauf von 50 % erzielt werden. Insgesamt füllten 9 von 18 Gemeinden das Kennzahlen-Monitoring aus. Um ein Gesamtergebnis für den öffentlichen Sektor der Region Strudengau darstellen zu können, wurde aus den gemeldeten Ergebnissen der 9 Gemeinden ein Durchschnitt pro Einwohner errechnet und mit der jeweiligen Einwohnerzahl jener Gemeinden, die kein Ergebnis rückmeldeten, hochgerechnet. Auf diese Weise entsteht ein Gesamtbild für den Energieverbrauch des öffentlichen Sektors in der Region Strudengau.

Der Energieverbrauch im öffentlichen Sektor in der Region Strudengau liegt im Bereich Wärme bei rund 18 MWh/EW*a, im Bereich Strom bei rund 8 MWh/EW*a und im Bereich Mobilität bei etwa 2 MWh/EW*a. Für die gesamte Region ergibt sich im öffentlichen Sektor folgendes Bild:

Wärme: 6.658 MWh/aStrom: 3.130 MWh/aMobilität: 848 MWh/a

Erzeugungsanlagen für Energie auf Basis erneuerbarer Energieträger haben sich im öffentlichen Sektor in der Region Strudengau im Gegensatz zu den anderen Sektoren in der Region (siehe auch Kapitel 1.6) noch nicht durchgesetzt. Im Rahmen des Kennzahlen-Monitorings stellte sich heraus, dass keine Gemeinde über eine eigene Stromerzeugungsanlage auf Basis erneuerbarer Energieträger verfügt und nur vier Gemeinden die Existenz einer gemeindeeigenen Wärmeerzeugungsanlage, die mit erneuerbaren Energieträgern betrieben wird, meldeten. Dabei handelt es sich um 3 Wärmepumpen, 1 Biomassekessel und 1 thermische Solaranlage. Wie sich bereits für die öffentlichen Sektoren anderer Klima- und Energie-Modellregionen zeigte, setzt sich der gemeindeeigene Fuhrpark ausschließlich aus fossilen Nutzfahrzeugen und PKW zusammen.

Durchschnittlich verfügt jede Gemeinde in der Region Strudengau über 5 fossile Nutzfahrzeuge und 2 fossile PKW. Die Nutzfahrzeuge weisen einen durchschnittlichen Verbrauch von 15,4 l/100 km auf und die PKW habe einen Durchschnittsverbrauch von 12 l/100 km. Mit den Nutzfahrzeugen werden im Durchschnitt 5.365 km pro Jahr zurückgelegt und mit den PKW rund 2000 km pro Jahr.

In Bezug auf die Prognosen zur Entwicklung der Erzeugungsstruktur von Energie im öffentlichen Sektor konnten die Gemeinden keine Angaben machen. Dies hängt möglicherweise mit der unsicheren finanziellen Lage dieser zusammen. Somit mussten für die Prognosen Annahmen getroffen werden, die sich zum Teil an anderen Klima- und Energie-Modellregionen orientieren und

möglichst realistisch sein sollten. In Bezug auf die Sanierung finden sich Details in Kapitel 10.2. Auf Basis dieser Informationen wurden die Prognosen für die Sanierung in der Region erstellt. Dennoch wurde angenommen, dass der Wärmeverbrauch bis 2020 konstant bleibt und gerade Energieeffizienzmaßnahmen und Sanierung diese Entwicklung bewerkstelligen.

Im Bereich der Wärmeerzeugung wird ein Potential vor allem im Ausbau der thermischen Solaranlagen gesehen. Aus diesem Grund wird die Anzahl der Biomassekessel sowie der Wärmepumpen in der Region über die Jahre konstant gehalten und nur die Anzahl der thermischen Solaranlagen in zwei Schritten erhöht. Nach dem zweiten Projektjahr, so die Annahme, soll sich die Anzahl der thermischen Solaranlagen von 1 auf 4 vervierfacht haben, wobei als durchschnittliche Fläche je Anlage 44 m² angesetzt werden. Da die bisher einzige im öffentlichen Sektor der Region Strudengau montierte thermische Solaranlage eine Fläche von 44 m² aufweist, kann davon ausgegangen werden, dass diese Fläche auch für andere Gemeinden in der Region realistisch ist. Demnach sollen nach dem 2. Projektjahr insgesamt 176 m² thermische Solaranlagen insgesamt rund 63 MWh Wärme jährlich erzeugen. Bis 2020 muss es Ziel sein, dass zumindest in der Hälfte der Gemeinden der Region eine thermische Solaranlage installiert ist. Als Ergebnis befinden sich in der Region dann 9 thermische Solaranlagen mit einer gesamten Fläche von 396 m², die eine Wärmemenge von rund 143 MWh/a liefern können.

Bis dato verfügt keine Gemeinde über eine Anlage zur Stromerzeugung aus erneuerbaren Energiequellen. Da die Gemeinden in der Region Strudengau als Teil einer Klima- und Energie-Modellregion Vorbildwirkung gegenüber der Bevölkerung haben sollen und zur Verankerung des bewussten Umgangs mit Energie beitragen sollen, muss es Ziel sein, dass nach dem 2. Projektjahr in zumindest 6 von 18 Gemeinden eine Photovoltaikanlage installiert ist und bis 2020 2/3 der Gemeinden (12 Gemeinden) über eine derartige Stromerzeugungsanlage verfügen sollten. Dies kann beispielsweise auch über das Förderprogramm des Landes Oberösterreich "PV macht Schule" realisiert werden, in dessen Rahmen die Errichtung von Photovoltaikanlagen auf Schulen gefördert wird. Im Rahmen des Kennzahlen-Monitoring wird mit der Annahme gerechnet, dass jede der installierten PV-Anlagen in der Region eine Leistung von 4,1 kW_{peak} aufweisen sollte. Somit ergibt sich bei Verwirklichung der Annahmen im Kennzahlen-Monitoring nach dem zweiten Projektjahr eine Stromproduktion von 27 MWh/Jahr und bis 2020 in Höhe von 54 MWh/Jahr.

Im Bereich der Mobilität ist die Anschaffung von je einem E-Bike pro Gemeinde geplant. Mittelfristig können mit dieser Maßnahme PKW eingespart werden. Insgesamt sollte bis zum Jahr 2020 in jeder Gemeinde ein E-Bike vorhanden sein. Dieses steht den Gemeindemitarbeitern für Botenfahrten auf Kurzstrecken zur Verfügung und hat den Vorteil, dass nicht auf fossil angetriebene PKW zurückgegriffen werden muss. Mit den E-Bikes kann eine Wegstrecke von jährlich ca. 150 km zurückgelegt werden. Diese Wegstrecke wird als Konsequenz von der jährlichen Kilometerleistung der fossilen PKWs abgezogen. Für das zweite Projektjahr sollte angestrebt werden, dass in der Hälfte der Gemeinden ein Elektrofahrrad vorhanden ist. Es wird angenommen, dass die Fahrräder eine durchschnittliche Leistung von 0,3 kW aufweisen. Bis 2020 sollte in der Region Strudengau insgesamt 9 fossile PKW eingespart werden. Im Bereich der gemeindeeigenen Nutzfahrzeuge wird keine Veränderung angenommen, da hier wesentliche Einschränkungen im Bereich der Technologie bestehen.

Für den Bereich der Kälteerzeugung aus erneuerbaren Quellen werden im Rahmen des Kennzahlen-Monitorings keine Annahmen getroffen, da gemäß der Erfahrung aus anderen Klimaund Energie-Modellregion seitens der Gemeinden oftmals derzeit kein Bedarf an Kühlung besteht und auch zukünftig kein Bedarf in diesem Bereich gesehen wird.

An dieser Stelle muss festgehalten werden, dass die finanzielle Lage in vielen Gemeinden derzeit angespannt ist und sich die Gemeinden eine Realisierung größerer Projekte, seien es umfassende Sanierungen oder die Errichtung von Energieerzeugungsanlagen auf Basis erneuerbarer Energieträger nicht vorstellen können. Grundsätzlich konnte während des Kennzahlen-Monitorings festgestellt werden, dass innerhalb der Gemeinden keine Prognosen in Bezug auf die Entwicklung der gemeindeeigenen Energieerzeugungsanlagen gemacht werden bzw. die Gemeindevertreter auch keine Aussagen zu diesem Thema tätigen können. Folglich gestaltet es sich schwierig hier eine "Top-down" Prognose aufzustellen. Angesichts dieser Tatsache wurde im Rahmen des Kennzahlen-Monitorings versucht zumindest ein, für eine Klima- und Energie-Modellregion akzeptables Maß an Maßnahmen im öffentlichen Sektor anzugeben.

Zusätzlich zu Angaben für die Gemeinden finden sich im Kennzahlen-Monitoring auch Angaben für die restlichen Sektoren in der Region. Diese stammen aus der in der Region durchgeführten EGEM-Erhebung. Aufgrund diverser Unsicherheiten zur Entwicklung der Strukturen in den übrigen Sektoren wird auf die Darstellung von Prognosen verzichtet.

7 Schwerpunktsetzung und prioritäre Umsetzungsmaßnahmen

Aufbauend auf das Energieleitbild der Energieregion Strudengau, dessen Strategien und Leitlinien bereits in Kapitel 3 ausführlich beschrieben wurden, erfolgt nun die Schwerpunktsetzung samt Entwicklung eines Maßnahmenplans zur transparenten und nachvollziehbaren Zielerreichung. Mit dem Energieleitbild der Energieregion Strudengau soll ein konkreter, für den Zeitraum bis 2020 gültiger Fahrplan für die regionale Energiepolitik geschaffen werden. Im Sinne einer nachhaltigen Energiepolitik sind die Ziele der ökonomischen, ökologischen und sozialen Dimension in gleichem Maße verpflichtend. Die Energieregion Strudengau bekennt sich damit zu einer Energiepolitik mit jenen strategischen Zielsetzungen, die in der Projektvorbereitung von den Mitgliedsgemeinden der Energieregion Strudengau formuliert wurden. Diese stellen sich wie folgt dar:

- Nachhaltige Zusammenarbeit (kein "kurzes Aufflackern") langfristige Entwicklung!
- Vernetzung der Akteure (Firmen, Gemeinden, Private, Landwirtschaft)
- Optimale Nutzung von Ressourcen
- Region möglichst "energieautark" zu machen!
- Bewusstseinsbildung in der Bevölkerung für Erneuerbare Energie sowie Sparmaßnahmen
- Ständiger Informationstransport der Sparmaßnahmen
- Ständige Evaluierung (der Zielerreichung)
- Wertschöpfung in der Region
- "Besonderes" machen nicht allerlei!
- Effizienzsteigerung bestehender Anlagen und Häuser
- Kompetenter und verlässlicher Partner/Ansprechpartner für Land OÖ, ESV, Bund, Kooperationspartner, Bildungseinrichtungen, etc...

Bei der Fokussierung auf Inhalte wurde angestrebt, dass sich die Region Strudengau auf einige konkrete Schwerpunkte konzentriert. Dadurch wird einerseits eine relativ breite Ausrichtung der Klima- und Energie-Modellregion gewährleistet und andererseits den Stärken und Chancen der Region Rechnung getragen. In diesem Sinne werden für die Klima- und Energie-Modellregion Strudengau folgende fünf Schwerpunkte samt Meilensteine bis Ende 2020+ angestrebt:

- 1. Sanierung öffentlicher Gebäudebereich
- 2. Mobilität und E-Mobilität
- 3. Verringerung des Strombedarfs
- 4. Energieeinsparmaßnahmen öffentlicher Bereich
- 5. Regionale Bewusstseinsbildung

Die Grundlage dieser Schwerpunkte ist das Energieleitbild der Klima- und Energie-Modellregion Strudengau. Somit bilden die Schwerpunkte einen integrativen Bestandteil des Energieleitbildes. Die einzelnen Schwerpunkte und die damit verbundenen Maßnahmen und Meilensteine werden in der Folge ausführlich beschrieben. Die in die Umsetzung der prioritären Schwerpunktmaßnahmen involvierten Akteure sind in Abbildung 7-1 dargestellt. Im Zentrum der Bemühungen im Energiebereich steht die Energieregion Strudengau und deren Energiemanager. Dieser koordiniert und steuert die Aktivitäten von Gemeinden und Wirtschaft und inkludiert die Bürger/innen durch innovative Partizipationsmodelle. Begleitet wird der Prozess in der Klima- und Energie-Modellregion durch das Energieinstitut an der Johannes Kepler Universität Linz.

Bürger/ innen Energie-region Wirt-schaft

Energie-institut

Abbildung 7-1: Vernetzung der Akteure in der Energieregion Strudengau

Quelle: Eigene Darstellung.

7.1 Schwerpunkt 1 – Sanierung im öffentlichen Gebäudebereich

Gerade der Bereich der Gebäudesanierung wurde bereits im EGEM-Bericht als besonders wichtig hervorgehoben. Eine gesamthafte Sanierung eines Gebäudes sollte stets nach den gleichen Gesichtspunkten durchgeführt werden: 1. zuerst Sanieren, um somit die Wärmeverluste über die Gebäudehülle einzuschränken und anschließend 2. die Heizungsanlage erneuern und/oder fossile Energiebereitstellung durch erneuerbare Energiebereitstellung zu substituieren. In diesem Schwerpunkt werden durch die Klima- und Energie-Modellregion folgende Maßnahmen umgesetzt:

- 1. Thermografische Messungen
- 2. Effizienzmaßnahmen im kommunalen Gebäudebereich 100
- 3. Dämmung oberste Geschoßdecke und Kellerdecke
- 4. Schwerpunkt Optimierung Heizsysteme (Kesseldimensionierung, Dämmung der Rohrleitungen, Regelung, moderne Heizungspumpen, hydraulische Einregulierungen)
- 5. Energieberatungen durchführen
- 6. Brennstofftausch von fossilen auf erneuerbaren Energieträgern
- 7. Schrittweise thermische Sanierung der gemeindeeigenen Gebäude

Maßnahmenvorschläge Gebäudebereich

Um dem in den letzten Jahren stetig steigenden Energiebedarf entgegenzuwirken, wird es in Zukunft sehr wichtig sein eine höchstmögliche Energieeinsparung zu erreichen. Im vorliegenden

⁰⁰ In diesem Bereich fanden bereits erste Gespräche mit den Bürgermeistern der Gemeinden der Energieregion Strudengau statt. In Abhängigkeit von der Prioritätenliste des Landes Oberösterreich sind beispielsweise Sanierungen von öffentlichen Pflichtschulen geplant.

Konzept wurden speziell Maßnahmen im Gebäudebereich untersucht, da diese am einfachsten umzusetzen sind und nicht von grundlegenden Verhaltens- und Systemänderungen begleitet werden müssen. Dies ist auch vor dem Hintergrund der weiter steigenden Energieverbräuche der Sektoren Mobilität und Strom zu begründen.

Wie bereits im Umsetzungsbericht erläutert, können aufgrund von Sanierungsmaßnahmen bereits mit etwa 60% der Investitionssumme, 90% der Endenergieeinsparung erreicht werden. Dies würde einer Amortisationszeit von etwa 16 Jahren entsprechen, womit klar gezeigt werden kann, dass in diesem Bereich mit relativ wenig Mitteln bereits viel erreicht werden kann. In den Gebäudebereich fallen überdies Endenergieeinsparpotentiale durch effizienzsteigernde und substituierende Maßnahmen.

Sanierung

Wie bereits im Umsetzungsbericht erläutert, wurden bei den Sanierungsmöglichkeiten die Bauperioden anhand ihrer Amortisationszeit gereiht. Das Ergebnis dieser Vorgehensweise ist in Tabelle 7-1 angeführt. Darin sind neben dem zeitlichen Ablauf auch die Anzahl der Gebäude, die Endenergieeinsparung und die aufzubringenden Investitionskosten der einzelnen Bauperioden angeführt. Die in Tabelle 7-1 angegebenen Zahlen beziehen sich hierbei auf das realistische Einsparpotential bzw. auf die realistischen Investitionskosten.

Führt man sich wiederum die 90/60 - Regel vor Augen d.h. 90% Endenergieeinsparung durch lediglich 60% der Investitionskosten, lassen sich diese Zahlen zu etwa 124.000 MWh/a Endenergieeinsparung und rund 190 Millionen € überführen. Mit diesen Beträgen wurde der Maßnahmenkatalog und Umsetzungsplan erarbeitet.

Tabelle 7-1: Endenergieeinsparung und Investitionskosten aufgrund Sanierung

				SA	NIERUNG	
Maß-	Bauperiode	Anzahl Gebäude	Zeitraum -	Sanierung	ΔEnergie	Investitionskosten
nahme		[#]	von	bis	[MWh]	[€]
1	bis 1944	2.051	2010	2014	51.288	71.487.155
2	1945 - 1959	662	2014	2016	14.842	28.120.076
3	1960 - 1979	2.556	2016	2023	41.287	108.406.539
4	1980 - 1989	1.481	2023	2026	19.270	60.391.351
5	1990 - 1999	1.210	2026	2028	7.192	28.885.680
6	2000 - 2009	779	2028	2029	3.201	13.638.022
	Summe:	8.739	2010	2029	137.079	310.928.822

Quelle: Eigene Darstellung.

Effizienzsteigerung und Substitution von Heizungsanlagen

Entsprechend der Vorgehensweise der Konzeptentwicklung folgt der Heizungsanlagenaustausch jeweils im Anschluss an eine vorangegangene Sanierung. Dies erklärt auch den Umstand, dass die Zeiträume der Effizienzsteigerung und Substitution von Heizungsanlagen in jenen um ein Jahr nachfolgen. Überdies sind noch die Summe der durch die Maßnahmen erreichbaren Endenergieeinsparung und die dafür bereitzustellenden Investitionskosten angeführt.

Wie in Tabelle 7-2 ersichtlich, können bis zum Jahr 2030 durch die Maßnahme Effizienzsteigerung und Substitution von Heizungsanlagen ca. 39.000 MWh/a an Endenergie eingespart werden. Hierzu ist eine Investitionssumme von etwa 74 Millionen Euro aufzuwenden. Mit vermiedenen Brennstoffkosten von 0,1 €/kWh entspricht dies einer Amortisationszeit von etwa 19 Jahren.

Tabelle 7-2: Endenergieeinsparung und Investitionskosten aufgrund von Effizienzsteigerung und Substitution

			EF	FIZIENZSTEIGE	RUNG + SUBST	TITUTION
Maß- nahme	Bauperiode	Anzahl Gebäude	Zeitraum - Effizienz- steigerung + Solar		ΔEnergie	Investitionskosten
nanme		[#]	von	bis	[MWh]	[€]
1	bis 1944	2.051	2011	2015	8.869	16.875.286
2	1945 - 1959	662	2015	2017	3.489	6.638.036
3	1960 - 1979	2.556	2017	2024	13.449	25.590.490
4	1980 - 1989	1.481	2024	2027	7.492	14.256.006
5	1990 - 1999	1.210	2027	2029	3.584	6.818.765
6	2000 - 2009	779	2029	2030	1.692	3.219.397
	Summe:	8.739	2011	2030	<i>38.57</i> 5	73.397.980

Summe - effizienzgesteigerter Anlagen: 5.904 (68%)

Quelle: Eigene Darstellung.

Solarpotentialnutzung

Mit einer vorgesehenen Steigerung der solaren Nutzfläche von derzeit ca. 0,7 m² pro Person auf 4 m² pro Person bis zum Ende der Konzeptbetrachtung (2030) lassen sich ca. 60.000 MWh/a an Endenergie in der Energieregion einsparen. Mit ca. 71 Millionen € Investitionskosten, sind diese bereits nach weniger als 12 Jahren durch vermiedene Brennstoffkosten (0,1 €/kWh) ausgeglichen. In Tabelle 7-3 sind neben der zu erwartenden Endenergiereduktion durch die verstärkte Nutzung der Solarenergie ebenfalls die dazu benötigten Investitionskosten und die Entwicklung der Solarfläche pro Person angeführt.

Tabelle 7-3: Endenergieeinsparung und Investitionskosten aufgrund Solarpotentialnutzung

	SOLAF	RES POTENTIAL	L* (RH + WW)	
Zeitraur	m - Solar	Solarfläche pro Person	ΔEnergie	Investitionskosten
von	bis	[m²/Pers.]	[MWh]	[€]
2010	2015	1,0	17.075	19.179.249
2015	2017	1,2	5.070	6.138.995
2017	2024	2,3	19.547	23.666.621
2024	2027	3,2	10.889	13.184.253
2027	2029	3,7	5.208	6.306.137
2029	2030	4,0	2.459	2.977.366
2010	2030	Summe:	60.248	71.452.620

*berechnet mit Solarpotential-Szenario 2 (4 m²/Pers.)

Quelle: Eigene Darstellung.

Die besondere Bedeutung dieses Schwerpunktes liegt auch in den europäischen, nationalen und regionalen Bemühungen zur Intensivierung der Energieeffizienz. Die Energieeffizienz-Richtlinie der EU, das Bundes-Energieeffizienzgesetz sowie das oö. Energieeffizienzgesetz werden auch verbindliche Vorgaben zur Sanierung von öffentlichen Gebäuden machen. Detaillierte Ausführungen zum Schwerpunkt 1 mit Fokus auf Altbausanierung von öffentlichen Gebäuden und Einfamilienhäusern sowie Möglichkeiten der Sanierung bei denkmalgeschützten Objekten finden sich im Anhang unter Punkt 10.2.

7.2 Schwerpunkt 2 – Mobilität und E-Mobilität

Der Bereich des Mobilitäts-Energiebedarfes wurde in der Konzeptbearbeitung ohne Veränderungen der Entwicklungen des Status Quo lediglich fortgeschrieben, um die dadurch auftretenden Probleme zu skizzieren. Im Bereich der Mobilität ist es unser Ziel, in der Klima- und Energie-Modellregion Strudengau folgende Punkte umzusetzen:

- 1. Forcierung von E-Mobilität (und anderen alternativen Antrieben)
- 2. Bildung von Fahrgemeinschaften zur Senkung des durch den Pendlerverkehr verursachten Energiebedarfes
- 3. Bestehende Radinfrastruktur ausbauen, E-Ladestationen, Bewerbung und ggf. gemeinsame Beschaffung von Elektrofahrrädern
- 4. Bewusstseinsbildung, Schulprojekte
- 5. Ko-Produktionsmöglichkeiten von erneuerbaren Energieträgern für Mobilitätszwecke (Strom, aufbereitetes Biogas, Beimischung etc.) in den untersuchten integrierten Energiesystemen von Synergio
- 6. Information- und Motivationskampagnen, mindestens ein E-Bike pro Gemeinde

7.3 Schwerpunkt 3 – Verringerung des Strombedarfs

Zu den Maßnahmen zur Verringerung des Strombedarfes in der Klima- und Energie-Modellregion Strudengau zählen:

- 1. Kleinwasserkraft in der Region forcieren
- 2. Photovoltaik in der Region fördern, Info Veranstaltungen durchführen
- 3. Strom Messgeräte, in Kooperation mit Unternehmern zur Verfügung stellen
- 4. Bewusstseinsbildung zur Verringerung der Standby-Verbräuche durch Netztrennschalter
- 5. Effizienzsteigerungen bei Wärmepumpen Sanierungsmaßnahmen am Gebäude, durch richtige Installation etc.
- 6. Schulprojekte durchführen
- 7. Verstärkte Bereitstellung dezentralen erneuerbaren Stromes in integrierten Energiesystemen (Synergio)

7.4 Schwerpunkt 4 – Energieeinsparmaßnahmen im öffentlichen Bereich

Da dem öffentlichen Sektor eine besondere Vorbildfunktion in der öffentlichen Wahrnehmung zukommt, werden folgende Aktivitäten als Maßnahmen im öffentlichen Bereich festgelegt:

- 1. Vorbildfunktion des öffentlichen Bereiches bei der Sanierung und Effizienzsteigerung sowie Brennstoffsubstitution in öffentlichen Gebäuden
- 2. Optimierung und effiziente Gestaltung der kommunalen Straßenbeleuchtung
- 3. Umsetzung der Energiebuchhaltung
- 4. Ersatz veralteter Verbraucher (Pumpen, Fahrzeuge, Maschinen etc.) durch effiziente neue Aggregate
- 5. Planung, Einreichung und Errichtung von PV-Anlagen auf geeigneten Dachflächen der Gemeinden in der KEM
- 6. Schulung von Gemeindebediensteten
- 7. Energieberatungsaktion des Landes Oberösterreich bewerben
- 8. Unterstützung bei der Umsetzung der integrierten Aufbringungskonzepte (Synergio)
- 9. Leader Themenkreis Energie, Leitungsfunktion übernehmen
- 10. Bürgermeistergespräche um Projektideen in den Gemeinden voran zu treiben, bzw. Erfahrungsaustausch

7.5 Schwerpunkt 5 – Regionale Bewusstseinsbildung

- 1. Energiemagazin mit Vorteilen für Kunden und Infos in Gemeindezeitungen
- 2. EnergieCard
- 3. Energiegruppen und Energiestammtische organisieren/eine Energiegruppe vorhanden
- 4. Strudengauer Messe¹⁰¹
- 5. Energiegruppen und Energiestammtische organisieren/eine Energiegruppe vorhanden
- 6. Kontaktaufnahme mit Firmen aus der Region
- 7. Informationsbereitstellung zu sämtlichen Themen aus dem Klima- und Energiebereich

¹⁰¹ Detaillierte Ausführungen zur Strudengauer Messe finden sich im Anhang unter Punkt 10.3.

7.6 Schwerpunkte der Klima- und Energie-Modellregion Strudengau

Abschließend werden in die Schwerpunkte und die damit verbundenen Maßnahmen und Meilensteine für die Klima- und Energie-Modellregion Strudengau tabellarisch dargestellt. Daraus ergibt sich dann auch der Zeitplan für die Realisierung des Umsetzungskonzeptes für die nächsten 10 Jahre.

Tabelle 7-4: Zeitplan für die Umsetzung der Schwerpunkte in der Energieregion Strudengau

			Zielerreichung		
	Maßnahme/ derzeitige Situation in der KEM	Ziele	2013	2017	2020+
Schwerpunkt 1: Sanierung im öffentlichen Gebäudebereich					
	Thermografische Messungen	Wärmebildkameraaktionen, gemeinsam mit der lokalen Wirtschaft	х		
	Effizienzmaßnahmen im kommunalen Gebäudebereich	Stabilisierung des Wärmeverbrauchs und gleichzeitige Reduktion		X	
		des Heizölverbrauchs			
	Dämmung oberste Geschoßdecke und Kellerdecke	Durchführung von Infokampagnen	x	X	X
	Schwerpunkt Optimierung Heizsysteme (Kesseldimensionierung, Dämmung der Rohrleitungen, Regelung, moderne Heizungspumpen, hydraulische Einregulierungen)	Austausch aller Heizkessel älter als 10 Jahre, in den öffentlichen Gebäuden			X
	Energieberatungen für private Haushalte, Gemeinde, Betriebe,	Durchführung von Energieberatungstagen, einmal im Quartal	X	Х	X
	Brennstofftausch von fossilen auf erneuerbare Energieträger	Mindestens 5 Gemeindeeigene Gebäude	Х		
	Ausschöpfung des Nahwärme-Potentials	Ausbau und Planung von	X	Χ	X

Schwerpunkt 2 – Mobilität und E-Mobilität (und anderen alternativen Antrieben) Schwerpunkt 2 – Mobilität und E-Mobilität (und anderen alternativen Antrieben) Mobilitätsoffensive Mobilität Ausbaupläne vorantreiben, E- Ladestationen, Bewerbung und ggf. gemeinsame Beschaffung von Elektrofahrrädern Informationsaustausch, x Lemeffekte Bewusstseinsbildung Verringerung des aktuellen x Strombedarfs Kleinwasserkraft in der Region Photovoltaik in der Region Photovoltaik in der Region Pliotprojekt Photovoltaik für kommunale Elektrotankstelle (Vorbildfunktion) Schwerpunkt Ökostrombezug für Gemeinden, Bezug von 100 % Ökostrom, x								
gemeindeeigenen Gebäude Schwerpunkt 2 – Mobilität und E-Mobilität Forcierung von E-Mobilität (und anderen alternativen Antrieben) Mobilitätsoffensive Mobilitätsoffensive Informationsveranstaltungen, Teil der in der Gemeinden verwendeten Fahrzeuge ist auf Elektroantrieb umgestellt Mobilitätsoffensive Informations- und Motivationskampagnen, mindestens ein E-Bilke pro Gemeinde bestehende Radinfrastruktur Ausbaupläne vorantreiben, E-Ladestationen, Bewerbung und ggf. gemeinsame Beschaffung von Elektrofahrrädern Kindergarten- und Schulprojekte zum Thema Informationsaustausch, x Lenneffekte Bewusstseinsbildung Verringerung des aktuellen x Strombedarfs Kleinwasserkraft in der Region Photovoltaik in der Region Informationsoffensive x Pilotprojekt Photovoltaik für kommunale Einrichtungen: Photovoltaik-Anlage und Elektrotankstelle (Vorbildfunktion) Mindestens 8 Gemeinden in der KEM			mindestens 3 Nahwärmenetzen in der KEM					
Forcierung von E-Mobilität (und anderen alternativen Antrieben) Informationsveranstaltungen, Teil x x x x x der in den Gemeinden verwendeten Fahrzeuge ist auf Elektroantrieb umgestellt Mobilitätsoffensive Informations- und x Motivationskampagnen, mindestens ein E-Bike pro Gemeinde bestehende Radinfrastruktur Ausbaupläne vorantreiben, E-Ladestationen, Bewerbung und ggf. gemeinsame Beschaffung von Elektrofahrrädern Kindergarten- und Schulprojekte zum Thema Informationsaustausch, x Lerneffekte Bewusstseinsbildung Verringerung des aktuellen x Strombedarfs Kleinwasserkraft in der Region Informationsoffensive x Photovoltaik in der Region Informationsoffensive x Pilotprojekt Photovoltaik für kommunale Einrichtungen: Photovoltaik-Anlage und Elektrotankstelle (Vorbildfunktion)				X				
Antrieben) der in den Gemeinden verwendeten Fahrzeuge ist auf Elektroantrieb umgestellt Mobilitätsoffensive Informations- und x Motivationskampagnen, mindestens ein E-Bike pro Gemeinde bestehende Radinfrastruktur Ausbaupläne vorantreiben, E-Ladestationen, Bewerbung und ggf. gemeinsame Beschaffung von Elektrofahrrädern Kindergarten- und Schulprojekte zum Thema Informationsaustausch, x Lerneffekte Bewusstseinsbildung Verringerung des aktuellen x Strombedarfs Kleinwasserkraft in der Region Informationsoffensive x Photovoltaik in der Region Informationsoffensive x Pilotprojekt Photovoltaik-Anlage und Elektrotankstelle (Vorbildfunktion) Mindestens 8 Gemeinden in der X KEM	Schwerpunkt 2 – Mobilität un	Schwerpunkt 2 – Mobilität und E-Mobilität						
Antrieben) der in den Gemeinden verwendeten Fahrzeuge ist auf Elektroantrieb umgestellt Mobilitätsoffensive Informations- und x Motivationskampagnen, mindestens ein E-Bike pro Gemeinde bestehende Radinfrastruktur Ausbaupläne vorantreiben, E-Ladestationen, Bewerbung und ggf. gemeinsame Beschaffung von Elektrofahrrädern Kindergarten- und Schulprojekte zum Thema Informationsaustausch, x Lerneffekte Bewusstseinsbildung Verringerung des aktuellen x Strombedarfs Kleinwasserkraft in der Region Informationsoffensive x Photovoltaik in der Region Informationsoffensive x Pilotprojekt Photovoltaik-Anlage und Elektrotankstelle (Vorbildfunktion) Mindestens 8 Gemeinden in der X KEM								
Motivationskampagnen, mindestens ein E-Bike pro Gemeinde bestehende Radinfrastruktur Ausbaupläne vorantreiben, E- x Ladestationen, Bewerbung und ggf. gemeinsame Beschaffung von Elektrofahrrädern Kindergarten- und Schulprojekte zum Thema Informationsaustausch, x Lerneffekte Bewusstseinsbildung Verringerung des aktuellen x Strombedarfs Kleinwasserkraft in der Region Photovoltaik in der Region Informationsoffensive x Photovoltaik in der Region Pilotprojekt Photovoltaik für kommunale Einrichtungen: Photovoltaik-Anlage und Elektrotankstelle (Vorbildfunktion) Motivationskampagnen, mindestens ein E-Bike pro Gemeinden in der x kemindestens ein E-Bike pro Semeinden in der			der in den Gemeinden verwendeten Fahrzeuge ist auf	X	X	X		
Ladestationen, Bewerbung und ggf. gemeinsame Beschaffung von Elektrofahrrädern Kindergarten- und Schulprojekte zum Thema Informationsaustausch, Lerneffekte Bewusstseinsbildung Verringerung des aktuellen x Strombedarfs Kleinwasserkraft in der Region Photovoltaik in der Region Informationsoffensive X Pilotprojekt Photovoltaik für kommunale Einrichtungen: Photovoltaik-Anlage und Elektrotankstelle (Vorbildfunktion) Ladestationen, Bewerbung und ggf. gemeinsame Beschaffung von Elektrofahrrädern X Minformationsaustausch, x Lerneffekte Verringerung des aktuellen x Strombedarfs Kleinwasserkraft in der Region Informationsoffensive x Mindestens 8 Gemeinden in der KEM		Mobilitätsoffensive	Motivationskampagnen, mindestens ein E-Bike pro	X				
Mobilität Bewusstseinsbildung Verringerung des aktuellen Strombedarfs Schwerpunkt 3 – Verringerung des Strombedarfs Kleinwasserkraft in der Region Informationsoffensive x Photovoltaik in der Region Informationsoffensive x Pilotprojekt Photovoltaik für kommunale Einrichtungen: Photovoltaik-Anlage und Elektrotankstelle (Vorbildfunktion) Kem		bestehende Radinfrastruktur	Ladestationen, Bewerbung und ggf. gemeinsame Beschaffung von			X		
Schwerpunkt 3 – Verringerung des Strombedarfs Kleinwasserkraft in der Region Informationsoffensive x Photovoltaik in der Region Informationsoffensive x Pilotprojekt Photovoltaik für kommunale Einrichtungen: Photovoltaik-Anlage und Elektrotankstelle (Vorbildfunktion) Strombedarfs X Kleinwasserkraft in der Region Informationsoffensive x KEM				х				
Kleinwasserkraft in der Region Informationsoffensive x Photovoltaik in der Region Informationsoffensive x Pilotprojekt Photovoltaik für kommunale Mindestens 8 Gemeinden in der x Einrichtungen: Photovoltaik-Anlage und Elektrotankstelle (Vorbildfunktion)		Bewusstseinsbildung		Х				
Photovoltaik in der Region Informationsoffensive x Pilotprojekt Photovoltaik für kommunale Mindestens 8 Gemeinden in der x Einrichtungen: Photovoltaik-Anlage und Elektrotankstelle (Vorbildfunktion)	Schwerpunkt 3 – Verringerung des Strombedarfs							
Pilotprojekt Photovoltaik für kommunale Mindestens 8 Gemeinden in der x Einrichtungen: Photovoltaik-Anlage und KEM Elektrotankstelle (Vorbildfunktion)		Kleinwasserkraft in der Region	Informationsoffensive	х				
Einrichtungen: Photovoltaik-Anlage und KEM Elektrotankstelle (Vorbildfunktion)		Photovoltaik in der Region	Informationsoffensive	х				
Schwerpunkt Ökostrombezug für Gemeinden, Bezug von 100 % Ökostrom, x		Einrichtungen: Photovoltaik-Anlage und			Х			
		Schwerpunkt Ökostrombezug für Gemeinden,	Bezug von 100 % Ökostrom,			X		

	Haushalte, Betriebe	Einkauf				
	Heizungspumpentauschaktion			х		
Schwerpunkt 4 – Energieeinsparmaßnahmen im öffentlichen Bereich						
	Energiebuchhaltung	Alle 18 Gemeinden der KEM haben eine Energiebuchhaltung		х		
	Optimierung und effiziente Gestaltung der kommunalen Straßenbeleuchtung	Installation einer stromsparenden Straßen- und Außenbeleuchtung, mindestens 3 Gemeinden	X	Х		
	Planung, Einreichung und Errichtung von PV- Anlagen auf geeigneten Dachflächen der Gemeinden in der KEM	mindestens 3 Gemeinden	X			
	Stromeinsparung durch Steuerung und Optimierung des Nutzerverhaltens in kommunalen Einrichtungen	Informationsveranstaltung	X			
	Nachhaltige öffentliche Beschaffung in Gemeinden (durch verantwortungsvolle Kaufentscheidungen eine nachhaltige Entwicklung fördern)			X	X	
	Schulung von Gemeindebediensteten	Schulung zu mehr Energieeffizienz		Х		
	Energieberatungsaktion des Landes Oberösterreich bewerben	Gemeinsam mit dem ESV OÖ Energieberatungstage in den Gemeinden abhalten	X	X	X	
	Energiebeauftragte/r in den Gemeinden	Mindestanforderung, eine Ansprechperson bei jeder Gemeinde der KEM	X			
	Leader-Themenkreis Energie	Projektvorstellung und Infos über Projekte an Dritte weiter geben	х	х	x	
Schwerpunkt 5 – Regionale Bewusstseinsbildung						
	Energiemagazin mit Vorteilen für Kunden und Infos in	Energiemagazin einmal jährlich,	X			

Gemeindezeitungen	Gemeindezeitung laufend			
EnergieCard	Die Weiterentwicklung der EnergieCard samt Vorteilen beim Einkauf für den Kunden	X		
Energiegruppen und Energiestammtische organisieren/eine Energiegruppe vorhanden	Bildung von mindestens 5 neuen Energiegruppen	X	X	X
Strudengauer Messe	Teilnahme an der Strudengauer Messe und Projektinformation	X		
Weiterbildung für Gemeindebedienstete	Schulungsveranstaltungen Energieeffizienz	X		
Schul- und Kindergartenaktionen, Lernende Energieregion			X	
Kontaktaufnahme mit Firmen aus der Region	Engere Vernetzung mit den Firmen aus der Region, Finden von mindestens 10 Partnerunternehmen	Х		
Informationsbereitstellung zu sämtlichen Themen aus dem Klima- und Energiebereich		х		

Quelle: Eigene Darstellung.

8 Zusammenfassung

Bereits im Rahmen der Antragsstellung für die Einreichung im Zuge der Ausschreibung der Klimaund Energie-Modellregionen, kristallisierte sich für die Region Strudengau der Schwerpunkt der Altbausanierung sowohl im öffentlichen, als auch im privaten Bereich heraus. Ausgangspunkt für die Festlegung des Schwerpunktes war zu einem großen Teil die zuvor in der Region durchgeführte EGEM-Erhebung.

Als erster Schritt wurden im Rahmen des Umsetzungskonzeptes die Sanierungspotentiale in der Region Strudengau quantifiziert. Grundlage dafür war die Gebäude- und Wohnungszählung der Statistik Austria, wobei zunächst untersucht wurde wie viele Gebäude, gegliedert nach Gebäudeart und Bauperiode, in der Region vorhanden sind. Diese Erhebung wurde auch auf Gemeindeebene durchgeführt. Für Maßnahmen der thermischen Sanierung kommen in erster Linie Gebäude in Frage, die zwischen 1945 und 1980 errichtet wurden. Rund 2.900 Wohngebäude wurden in der Region Strudengau in dieser Bauperiode errichtet und kommen theoretisch für eine thermische Sanierung in Frage. Folgende Maßnahmen ergeben gemeinsam durchgeführt eine umfassende thermische Sanierung:

- Tausch von Fenstern und Außentüren.
- Dämmung der Außenwände
- Dämmung der obersten Geschoßdecke
- Dämmung der Kellerdecke

Auch wenn nur eine dieser Maßnahmen an einem Gebäude durchgeführt wird, kann ein Einsparungspotential realisiert werden. Aus diesem Grund wurde im Rahmen des vorliegenden Umsetzungskonzepts auch die Einsparmöglichkeit bei der Umsetzung von Einzelmaßnahmen quantifiziert. Die Ergebnisse dazu können im Detail in Kapitel 10 nachgelesen werden. Eine Darstellung der Ergebnisse für einzelne Maßnahmen für die Region Strudengau findet sich zudem in Kapitel 2.3. In diesem Kapitel wird auch die Wirtschaftlichkeit der einzelnen Maßnahmen sowie der gesamten thermischen Sanierung dargestellt. Wird das gesamte Sanierungspotential in der Region realisiert und eine umfassende thermische Sanierung durchgeführt, ergibt sich eine Energieeinsparung in Höhe von rund 61.100 MWh/a.

Im Projektverlauf stellte sich jedoch heraus, dass es sich schwierig gestaltet, Interessenten für eine umfassende thermische Sanierung zu gewinnen. Gerade im Bereich der öffentlichen Gebäude zeigte sich, dass in mehreren Gemeinden in den vergangenen Jahren bereits Gebäude saniert wurden, es aber auch noch vorhandenes Potential gibt, welches aufgrund finanzieller Gegebenheiten derzeit nicht realisiert werden kann. Andere Gemeinden gaben an, in den nächsten Jahren ein Sanierungsprojekt umsetzen zu wollen, wobei sie diesbezüglich keine genaueren Aussagen machen konnten, da es zu diesen Vorhaben noch keine konkreten Detailplanungen gibt.

Das Umsetzungskonzept zeigt jedoch auch Best-Practice Beispiele aus dem privaten Sektor. In der Region Strudengau wurden in Vergangenheit bereits innovative Sanierungsprojekte umgesetzt, die aufgrund der guten Vernetzung von durchführenden Unternehmen und potentiellen Interessenten im Rahmen der EnergieCard Aktion publik gemacht werden und bei Beratungen als Vorzeigeprojekte dienen. Dies legt den Grundstein, um weiteres Sanierungspotential zu realisieren. Auch der Schwerpunkt "Verankerung des Energiespar-Gedankens in der Strudengau-Messe als Anstoß zur Sanierung" im Rahmen des Umsetzungskonzeptes hat zum Ziel durch verstärkte Vernetzung von Energieregion, Unternehmen und BürgerInnen Bewusstseinsbildung zu

betreiben und Sanierungspotentiale zu heben. Gerade die Schwierigkeit im Rahmen der Erstellung des Umsetzungskonzeptes, vermehrt konkrete Sanierungsprojekte in der Region Strudengau zu finden, hat gezeigt, dass weitere Bewusstseinsbildung auf diesem Gebiet dringend notwendig ist.

Noch während der Erstellung des Umsetzungskonzeptes wurde in Münzbach durch die Flächenwidmung der Grundstein für eine Ökosiedlung als Neubauprojekt gelegt. Auch wenn es sich um Neubauten handelt, müssen diese Bestrebungen als Umsetzungsmaßnahme gelten, da der energieeffiziente Neubau eine wesentliche Voraussetzung für zukünftige Energieeinsparungen ist, gerade auch dann, wenn es sich um ein integratives Konzept, wie in Münzbach handelt. Durch flächensparende Bauweise sowie die Integration von mehreren Energieerzeugungstechnologien auf Basis erneuerbarer Energiequellen, handelt es sich dabei um ein Modell, dass auch für andere Modellregionen anwendbar sein wird.

Letztendlich wurden **fünf Schwerpunktbereiche** für das Umsetzungskonzept der Klima- und Energie-Modellregion Strudengau festgelegt, die bis 2020 realisiert werden:

- 1. Sanierung öffentlicher Gebäudebereich
- 2. Mobilität und E-Mobilität
- 3. Verringerung des Strombedarfs
- 4. Energieeinsparmaßnahmen öffentlicher Bereich
- 5. Regionale Bewusstseinsbildung

Da in der Region Strudengau die Energieregion Strudengau GmbH als zentrale Koordinationsstelle für Projekte im Bereich effiziente Energienutzung und Ausbau der Energieerzeugung auf Basis regenerativer Energieträger bereits seit längere Zeit etabliert ist und auch im Bereich der Bewusstseinsbildung sowohl im öffentlichen Bereich als auch im privaten Bereich aktiv ist, hat die Klima- und Energie-Modellregion Strudengau einen gewissen Vorteil gegenüber anderen Modellregionen. Andererseits zeigte sich jedoch im Projektverlauf, dass es dennoch schwierig ist, engagierte Personen zu finden, die bereit sind, Initiativen zu setzen (hier: in Form von Sanierungen). Deshalb muss bei Genehmigung der 2. Projektphase und Umsetzung der Schwerpunktprojekte im gleichen Zuge verstärkt Bewusstseinsbildung betrieben werden. In diesem Zusammenhang werden auch die Energieberatungen, die die Energieregion Strudengau GmbH in Zusammenarbeit mit dem Energiesparverband Oberösterreich anbietet, zu forcieren sein. Grundsätzlich bietet die Region Strudengau sehr gute Voraussetzungen, um das in der Region vorhandene Sanierungspotential zu heben.

Die energiepolitischen Leitziele der Klima- und Energie-Modellregion Strudengau spiegeln Aufgaben des Energieregionsmanagement für nächsten Jahre bzw. die Projektlaufzeit wider:

- Steigerung der Energieeffizienz
- Steigerung der Eigenenergieversorgung und gleichzeitige Senkung der Fremdversorgungsabhängigkeit
- Nutzung heimischer Ressourcen zur Stärkung der regionalen Wertschöpfung
- Stärkung regionaler Wirtschaftszusammenhänge durch die Nutzung erneuerbarer und regional verfügbarer Energieträger
- Geringe Abhängigkeit zur Sicherung und zum Ausbau der wirtschaftlichen Prosperität
- Näherung hin zu einem Nachhaltigkeitsgedanken in der Energiewirtschaft
- Umsetzung der Konzeptschwerpunkte in der vorgesehenen Reihenfolge
 - o Gebäudesanierung

- o Effizienzsteigerung und Substitution von fossilen Brennstoffen im Bereich Raumwärme und Warmwasser
- o Einarbeitung in das vernetzte und integrierte Energiesystem (SYNERGIO)
- Geeignete Rahmenbedingungen für die Sanierung der Gebäude in den Gemeinden der Region schaffen
- Aktivierung der Energiebuchhaltung GEBLI in den Gemeinden der Energieregion Strudengau

Abschließend bleibt festzuhalten, dass in der Klima- und Energie-Modellregion Strudengau der Schwerpunkt zwar eindeutig auf der Altbausanierung und dem energieeffizienten Neubau liegen wird, die Energieregion Strudengau GmbH als zentrale Energiemanagementeinrichtung der Region auch intensive Bestrebungen im Bereich energieeffiziente Beleuchtung (LED), E-Mobilität sowie PV-Bürgerbeteiligungsmodelle betreiben. Mit der Umsetzung wird noch im Jahr 2012 begonnen.

9 Literaturverzeichnis

- Bundesministerium für Wirtschaft, Familie und Jugend (2011a): Infoblatt "Förderinformation Sanierungsscheck 2011, Thermische Sanierung privater Wohnbau, Befristete Förderungsaktion im Rahmen der Sanierungsoffensive",

 http://www.umweltfoerderung.at/kpc/de/home/umweltfrderung/fr_private/energieeffizienz/sanierungsscheck_2011/, Zugriff: 11.05.2011
- Bundesministerium für Wirtschaft, Familie und Jugend (2011b): Infoblatt "Förderinformation Thermische Sanierung Betriebe, Förderungsaktion im Rahmen der Sanierungsoffensive der Österreichischen Bundesregierung",

 http://www.umweltfoerderung.at/kpc/de/home/umweltfrderung/fr_betriebe/energieeffizienz/thermische_gebudesanierung_sanierungsoffensive_2011/, Zugriff: 11.05.2011
- Bundesministerium für Wirtschaft, Familie und Jugend (2011b): Leitfaden "Leitfaden Mustersanierung 2011, Eine Förderungsaktion im Rahmen des Klima- und Energiefonds der österreichischen Bundesregierung",

 http://www.umweltfoerderung.at/uploads/20110413_leitfaden_mustersanierung_2011.pdf,

 Zugriff: 11.05.2011
- E-Control (2011): Energie-Control Austria, Wien, Zugriff: 09.06.2011, http://www.e-control.at/de/industrie/energiemaerkte-allgemein/energietraeger/erdgas
- ERB (2010): Vorlesung und Übung "Energieeffizientes und ressourcenschonendes Bauen", 4. Semester, Bacheloreatsstudium, Studiengang Öko-Energietechnik, Fachhochschule Wels
- Kesicki (2009): Eine integrative Szenarienanalyse der langfristigen Ölpreisentwicklung, Fabian Kesicki, Uwe Remme, Markus Bleschl, Ulrich Fahl, 2009, 6. Internationale Energiewirtschaftstagung an der TU Wien, Institut für Energiewirtschaft und Rationelle Energieanwendung, Universität Stuttgart
- Kollmann (2009): Dr. Andrea Kollmann, Sanierung von Einfamilienwohnhäusern der Bauperiode 1945-1980, Analyse der regionalökonomischen Auswirkungen für Oberösterreich, Verlag proLIBRIS.at, S. 181ff
- Land OÖ (2011a): Förderungen zum Thema Bauen und Wohnen, Förderungen im Bereich Sanieren und Renovieren, http://www.land-oberoesterreich.gv.at/cps/rde/xchg/SID-DB861C53-1E3D1B88/ooe/hs.xsl/12819_DEU_HTML.htm, Zugriff: 26.04.2011
- Land OÖ (2011b): Förderungen zum Thema Bauen und Wohnen, Förderungen im Bereich Neubau, Eigenheim, http://www.land-oberoesterreich.gv.at/cps/rde/xchg/SID-B91621CA-670E1D15/ooe/hs.xsl/34819_DEU_HTML.htm, Zugriff: 28.04.2011
- McKinsey (2007): Kosten und Potenziale der Vermeidung von Treibhausgasemissionen in Deutschland, eine Studie von McKinsey & Company, Inc., erstellt im Auftrag von "BDI initiativ Wirtschaft für Klimaschutz", September 2007
- Mineralölwirtschaftsverband (2011): Mineralölwirtschaftsverband e.V., Berlin, http://www.mwv.de/index.php/daten/statistikenpreise/?loc=4, Zugriff: 09.05.2011
- OIB-Richtlininen Begriffsbestimmungen (2007): Österreichisches Institut für Bautechnik, Ausgabe April 2007, S. 5

- OIB Leitfaden Energetisches Verhalten von Gebäuden (2007): Österreichisches Institut für Bautechnik, Version 2.6, Ausgabe April 2007
- OIB-Richtlinie 6 (2007): Österreichisches Institut für Bautechink, Ausgabe April 2007, S. 2
- OIB aktuell (2011): Zeitschrift OIB aktuell, Heft 2/2011, Die neue OIB-richtlinie 6 "Energieeinsparung und Wärmeschutz", Österreichisches Institut für Bautechnik, http://www.oib.or.at/OIBaktuell.htm#heft2_11, Zugriff: 28.04.2011
- Statistik Austria (2004a): Gebäude- und Wohnungszählung 2001 Hauptergebnisse Österreich, Verlag Österreich GmbH
- Statistik Austria (2004b): Gebäude- und Wohnungszählung 2001 Hauptergebnisse Oberösterreich, Verlag Österreich GmbH
- Statistik Austria (2004c): Gebäude- und Wohnungszählung 2001 Hauptergebnisse Niederösterreich, Verlag Österreich GmbH
- Statistik Austria (2006): Gebäude- und Wohnungszählung 2001 Benutzerhandbuch, 2. Auflage
- Statistik Austria (2011a): Datenbank ISIS, www.statistik.at, Zugriff: 13.04.2011
- Statistik Austria (2011b): Datenbank "Ein Blick auf die Gemeinden", http://www.statistik.at/blickgem/index.jsp, Zugriff: 31.03.2011, 01.04.2011, 05.04.2011
- Statistik Austria (2011c): Bestand an Wohnungen und Gebäuden, Datengrundlage: Gebäude und Wohnungszählung 2001, div. Tabellen, Erstellt am 01.06.2007, 13.08.2007, 08.04.2001 https://www.statistik.at/web_de/statistiken/wohnen_und_gebaeude/bestand_an_gebaeuden_und_wohnungen/index.html, Zugriff: April und Mai 2011
- Statistik Austria (2011d): Energie, Energieeinsatz der Haushalte, Datengrundlage: Gebäude und Wohnungszählung 2001, div. Tabellen, Erstellt am 08.06.2009, <a href="https://www.statistik.at/web_de/statistiken/energie_und_umwelt/energie/energieeinsatz_der_haushalte/index.htmlhttps://www.statistik.at/web_de/statistiken/wohnen_und_gebaeude/best_and_an_gebaeuden_und_wohnungen/index.html, Zugriff: Mai 2011
- Tichler et al. (2009): Mag. Dr. Robert Tichler, o.Univ.-Prof. Dr. Friedrich Schneider, DI Dr. Horst Steinmüller, Volkswirtschaftliche Analyse des Maßnahmenprogramms "Energiezukunft 2030 der Oberösterreichischen Landesregierung" Endbericht, Mai 2009, Energieinstitut an der Johannes Kepler Universität Linz
- Tichler et al. (2010): Mag. Dr. Robert Tichler, Dipl.-Volksw. Sebastian Goers, Dl Dr. Horst Steinmüller, Analyse von Vermeidungskosten von Treibhausgasemissionen in Oberösterreich Studie 2, März 2010, Energieinstitut an der Johannes Kepler Universität Linz
- Wirtschaftsblatt (2011): Wirtschaftsblatt, Sanierungsscheck: Drei Viertel der Fördermittel sind noch zu haben, Artikeldatum: 05.04.2011, Autor: André Exner,

 http://www.wirtschaftsblatt.at/home/oesterreich/branchen/sanierungsscheck-drei-viertel-derfoerdermittel-sind-noch-zu-haben-466591/index.do, Zugriff: 09.06.2011

10 Anhang

Im Anhang des Umsetzungskonzeptes finden sich die Sanierungspotentiale und die darauf aufbauende Energieeinsparung für jede einzelne Gemeinde der Energieregion Strudengau sowie Ergänzungen zu den im Umsetzungskonzept gewählten Schwerpunkten.

10.1 Sanierungspotential der Gemeinden

Im Folgenden werden die Ergebnisse für die einzelnen Gemeinden dargestellt. Es ist dabei anzumerken, dass es sich um eine Potentialabschätzung handelt und der tatsächliche Bestand von dem berechneten Wert abweichen kann.

10.1.1 Allerheiligen

Tabelle 10-1: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Allerheiligen

Sanierungspotential gesamt										
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential						
Wohngebäude mit 1-2 Whg.	259	1,05%	27	232						
Wohngebäude mit 3-10 Whg.	3	1,85%	1	2						
Wohngebäude mit >10 Whg.	0	2,91%	0	0						
Summe	262		28	234						

Tabelle 10-2: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Allerheiligen

Sanierungspotential 1945-1980										
Gebäude	Anzahl der Gebäude	Sanierungsrate δ^G	Sanierte Gebäude bis 2010	Sanierungs- potential						
Wohngebäude mit 1-2 Whg.	101	1,05%	11	90						
Wohngebäude mit 3-10 Whg.	1	1,85%	0	1						
Wohngebäude mit >10 Whg.	0	2,91%	0	0						
Summe	102		11	91						

Tabelle 10-3: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Allerheiligen für einzelne Sanierungsmaßnahmen

Art des	Ø						Sanierung	gsmaßnal	nmen				
Wohn- gebäu- des	HWB [kWh /m²a]			Fenstern und Kellerdecke Geschoßdecke Außenwände			ermische nierung	Gesa	mtsanierung				
		HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]
1-2 Whg.	201	178	275.381	176	297.198	180	254.361	111	1.070.126	67	1.597.739	46	1.844.651
3-10 Whg.	120	106	5.013	108	4.359	106	5.231	67	19.181	42	28.336	29	33.132
>10 Whg.	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ			280.394		301.558		259.592		1.089.308		1.626.076		1.877.782

138

Tabelle 10-4: Szenarien der Energieeinsparung Teil 1 der Gemeinde Allerheiligen

	Allgeme	ines			Szena	ario 1		Szenario 2			
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]				bei MFG [kWh/a]			
					Tausch von I	Fenster und Tü	ren				
1-2 Whg.	201	178	1,80	5.508	16.523	55.076	110.152	8.261	24.784	82.614	165.228
3-10 Whg.	120	106	1,00	0	5.013	5.013	5.013	0	5.013	5.013	5.013
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				5.508	21.536	60.089	115.166	8.261	29.798	87.627	170.242
					Dämmung	der Kellerdeck	е				
1-2 Whg.	201	176	1,80	5.944	17.832	59.440	118.879	8.916	26.748	89.159	178.319
3-10 Whg.	120	108	1,00	0	4.359	4.359	4.359	0	4.359	4.359	4.359
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				5.944	22.191	63.799	123.239	8.916	31.107	93.519	182.678
					Dämmung d	er Geschoßdec	ke				
1-2 Whg.	201	180	1,80	5.087	15.262	50.872	101.744	7.631	22.893	76.308	152.617
3-10 Whg.	120	106	1,00	0	5.231	5.231	5.231	0	5.231	5.231	5.231
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				5.087	20.493	56.104	106.976	7.631	28.124	81.540	157.848

¹⁰² Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

Tabelle 10-5: Szenarien der Energieeinsparung Teil 2 der Gemeinde Allerheiligen

	Allgeme	ines			Szena	ario 1		Szenario 2			
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[KVVII]	[KVVII]	[KVVII]	bei MFG [kWh/a]	[KVVII]	[KWII]	[KWII]
					Dämmung (der Außenwänd	le				
1-2 Whg.	201	111	1,80	21.403	64.208	214.025	428.050	32.104	96.311	321.038	642.076
3-10 Whg.	120	67	1,00	0	19.181	19.181	19.181	0	19.181	19.181	19.181
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				21.403	83.389	233.207	447.232	32.104	115.493	340.219	661.257
					Thermise	che Sanierung					
1-2 Whg.	201	67	1,80	31.955	95.864	319.548	639.096	47.932	143.797	479.322	958.644
3-10 Whg.	120	42	1,00	0	28.336	28.336	28.336	0	28.336	28.336	28.336
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				31.955	124.201	347.884	667.432	47.932	172.133	507.658	986.980
					Gesan	ntsanierung					
1-2 Whg.	201	46	1,80	36.893	110.679	368.930	737.860	55.340	166.019	553.395	1.106.790
3-10 Whg.	120	29	1,00	0	33.132	33.132	33.132	0	33.132	33.132	33.132
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				36.893	143.811	402.062	770.992	55.340	199.150	586.527	1.139.922

¹⁰³ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

10.1.2 Arbing

Tabelle 10-6: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Arbing

Sanierungspotential gesamt										
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential						
Wohngebäude mit 1-2 Whg.	316	1,05%	33	283						
Wohngebäude mit 3-10 Whg.	3	1,85%	1	2						
Wohngebäude mit >10 Whg.	0	2,91%	0	0						
Summe	319		34	285						

Tabelle 10-7: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Arbing

Sanierungspotential 1945-1980										
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential						
Wohngebäude mit 1-2 Whg.	146	1,05%	15	131						
Wohngebäude mit 3-10 Whg.	2	1,85%	0	2						
Wohngebäude mit >10 Whg.	0	2,91%	0	0						
Summe	148		15	133						

Tabelle 10-8: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Arbing für einzelne Sanierungsmaßnahmen

Art des	Ø						Sanierung	ısmaßnal	nmen				
Wohn- gebäu- des	u- [kWh Tausch von		Dämmung der Kellerdecke			Dämmung der Geschoßdecke		Dämmung der Außenwände		Thermische Sanierung		Gesamtsanierung	
		HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]
1-2 Whg.	199	176	396.774	175	415.079	178	373.992	110	1.538.110	67	2.292.679	46	2.652.186
3-10 Whg.	128	113	10.695	111	12.555	115	9.300	70	41.850	42	62.776	29	72.076
>10 Whg.	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ			407.469		427.634		383.293		1.579.960		2.355.455		2.724.261

Tabelle 10-9: Szenarien der Energieeinsparung Teil 1 der Gemeinde Arbing

	Allgeme	ines			Szena	ario 1		Szenario 2			
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	bei MFG	Į <u>,</u>		bei MFG [kWh/a]	Į <u>,</u>	į,	[]
					Tausch von I	Fenster und Tü	ren				
1-2 Whg.	199	176	2,62	7.935	23.806	79.355	158.710	11.903	35.710	119.032	238.065
3-10 Whg.	128	113	1,00	160	5.348	6.471	8.075	160	5.348	6.471	8.075
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				8.096	29.154	85.825	166.785	12.064	41.057	125.503	246.139
					Dämmung	der Kellerdeck	е				
1-2 Whg.	199	175	2,62	8.302	24.905	83.016	166.032	12.452	37.357	124.524	249.047
3-10 Whg.	128	111	1,00	188	6.278	7.596	9.479	188	6.278	7.596	9.479
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				8.490	31.182	90.612	175.511	12.641	43.635	132.120	258.526
					Dämmung d	er Geschoßdec	ke				
1-2 Whg.	199	178	2,62	7.480	22.440	74.798	149.597	11.220	33.659	112.198	224.395
3-10 Whg.	128	115	1,00	140	4.650	5.627	7.022	140	4.650	5.627	7.022
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				7.619	27.090	80.425	156.619	11.359	38.309	117.824	231.417

¹⁰⁴ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

Tabelle 10-10: Szenarien der Energieeinsparung Teil 2 der Gemeinde Arbing

	Allgeme	ines			Szena	ario 1		Szenario 2			
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	į <u>,</u>	Į <u>,</u>	[]	bei MFG [kWh/a]	Į <u>,</u>	į <u>,</u>	[]
					Dämmung	der Außenwänd	le				
1-2 Whg.	199	110	2,62	30.762	92.287	307.622	615.244	46.143	138.430	461.433	922.866
3-10 Whg.	128	70	1,00	628	20.925	25.319	31.597	628	20.925	25.319	31.597
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				31.390	113.212	332.941	646.841	46.771	159.355	486.752	954.463
					Thermis	che Sanierung					
1-2 Whg.	199	67	2,62	45.854	137.561	458.536	917.072	68.780	206.341	687.804	1.375.607
3-10 Whg.	128	42	1,00	942	31.388	37.979	47.396	942	31.388	37.979	47.396
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				46.795	168.949	496.515	964.467	69.722	237.729	725.783	1.423.003
					Gesan	ntsanierung					
1-2 Whg.	199	46	2,62	53.044	159.131	530.437	1.060.874	79.566	238.697	795.656	1.591.311
3-10 Whg.	128	29	1,00	1.081	36.038	43.606	54.417	1.081	36.038	43.606	54.417
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				54.125	195.169	574.043	1.115.291	80.647	274.735	839.261	1.645.729

¹⁰⁵ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

10.1.3 Bad Kreuzen

Tabelle 10-11: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Bad Kreuzen

Sanierungspotential gesamt										
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential						
Wohngebäude mit 1-2 Whg.	448	1,05%	47	401						
Wohngebäude mit 3-10 Whg.	15	1,85%	3	12						
Wohngebäude mit >10 Whg.	0	2,91%	0	0						
Summe	463		50	413						

Tabelle 10-12: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Bad Kreuzen

Sanierungspotential 1945-1980												
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential								
Wohngebäude mit 1-2 Whg.	159	1,05%	17	142								
Wohngebäude mit 3-10 Whg.	9	1,85%	2	7								
Wohngebäude mit >10 Whg.	0	2,91%	0	0								
Summe	168		19	149								

Tabelle 10-13: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Bad Kreuzen für einzelne Sanierungsmaßnahmen

Art des	Ø						Sanierunç	gsmaßnal	nmen				
Wohn- gebäu- des	HWB [kWh /m²a]	Tausch von Fenstern und Außentüren		Dämmung der Kellerdecke		Dämmung der Geschoßdecke			mung der enwände		ermische nierung	Gesamtsanierung	
		HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]
1-2 Whg.	202	179	435.679	177	474.098	181	400.195	112	1.694.160	67	2.530.569	46	2.920.092
3-10 Whg.	127	112	37.099	110	41.938	114	33.181	70	144.708	42	216.601	29	249.321
>10 Whg.	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ			472,778		516.036		433.377		1.838.868		2.747.169		3.169.413

Tabelle 10-14: Szenarien der Energieeinsparung Teil 1 der Gemeinde Bad Kreuzen

	Allgeme	ines			Szena	ario 1		Szenario 2			
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[KVVII]	[KVVII]	[KVVII]	bei MFG [kWh/a]	[KVVII]	[KWII]	[KWII]
					Tausch von l	Fenster und Tü	ren				
1-2 Whg.	202	179	2,84	8.714	26.141	87.136	174.272	13.070	39.211	130.704	261.408
3-10 Whg.	127	112	1,00	954	5.300	11.978	21.517	954	5.300	11.978	21.517
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				9.668	31.441	99.113	195.789	14.024	44.511	142.681	282.925
					Dämmung	der Kellerdeck	е				
1-2 Whg.	202	177	2,84	9.482	28.446	94.820	189.639	14.223	42.669	142.229	284.459
3-10 Whg.	127	110	1,00	1.078	5.991	13.540	24.324	1.078	5.991	13.540	24.324
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				10.560	34.437	108.359	213.963	15.301	48.660	155.769	308.783
					Dämmung d	er Geschoßdec	ke				
1-2 Whg.	202	181	2,84	8.004	24.012	80.039	160.078	12.006	36.018	120.059	240.117
3-10 Whg.	127	114	1,00	853	4.740	10.713	19.245	853	4.740	10.713	19.245
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				8.857	28.752	90.752	179.323	12.859	40.758	130.771	259.362

¹⁰⁶ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

Tabelle 10-15: Szenarien der Energieeinsparung Teil 2 der Gemeinde Bad Kreuzen

	Allgeme	ines			Szena	ario 1		Szenario 2			
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[]	[]	[]	bei MFG [kWh/a]	[]	[]	[]
					Dämmung (der Außenwänd	le				
1-2 Whg.	202	112	2,84	33.883	101.650	338.832	677.664	50.825	152.474	508.248	1.016.496
3-10 Whg.	127	70	1,00	3.721	20.673	46.720	83.930	3.721	20.673	46.720	83.930
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				37.604	122.322	385.552	761.595	54.546	173.147	554.968	1.100.427
					Thermise	che Sanierung					
1-2 Whg.	202	67	2,84	50.611	151.834	506.114	1.012.227	75.917	227.751	759.171	1.518.341
3-10 Whg.	127	42	1,00	5.570	30.943	69.931	125.628	5.570	30.943	69.931	125.628
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				56.181	182.777	576.045	1.137.856	81.487	258.694	829.102	1.643.969
					Gesan	ntsanierung					
1-2 Whg.	202	46	2,84	58.402	175.206	584.018	1.168.037	87.603	262.808	876.028	1.752.055
3-10 Whg.	127	29	1,00	6.411	35.617	80.495	144.606	6.411	35.617	80.495	144.606
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				64.813	210.823	664.513	1.312.643	94.014	298.426	956.523	1.896.661

¹⁰⁷ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

10.1.4 Baumgartenberg

Tabelle 10-16: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Baumgartenberg

	Sanierungspotential gesamt											
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential								
Wohngebäude mit 1-2 Whg.	311	1,05%	33	278								
Wohngebäude mit 3-10 Whg.	9	1,85%	2	7								
Wohngebäude mit >10 Whg.	1	2,91%	0	1								
Summe	321		35	286								

Tabelle 10-17: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Baumgartenberg

Sanierungspotential 1945-1980											
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential							
Wohngebäude mit 1-2 Whg.	131	1,05%	14	117							
Wohngebäude mit 3-10 Whg.	4	1,85%	1	3							
Wohngebäude mit >10 Whg.	0	2,91%	0	0							
Summe	135		15	120							

Tabelle 10-18: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Baumgartenberg für einzelne Sanierungsmaßnahmen

Art des	Ø						Sanierung	ısmaßnal	nmen				
Wohn- gebäu- des	HWB [kWh /m²a]	Fens			nmung der Dämmung der Ilerdecke Geschoßdecke				mung der enwände		ermische nierung	Gesamtsanierung	
		HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]
1-2 Whg.	199	176	353.266	175	366.000	177	335.019	110	1.368.432	67	2.038.732	46	2.359.836
3-10 Whg.	120	106	15.040	108	13.078	106	15.694	67	57.544	42	85.009	29	99.395
>10 Whg.	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ			368.306		379.079		350.713		1.425.976		2.123.741		2.459.230

Tabelle 10-19: Szenarien der Energieeinsparung Teil 1 der Gemeinde Baumgartenberg

	Allgeme	ines			Szena	ario 1		Szenario 2			
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	į <u>,</u>	Į <u>,</u>		bei MFG [kWh/a]	Į <u>,</u>		[]
					Tausch von l	Fenster und Tü	ren				
1-2 Whg.	199	176	2,34	7.065	21.196	70.653	141.307	10.598	31.794	105.980	211.960
3-10 Whg.	120	106	1,00	301	5.013	7.119	10.127	301	5.013	7.119	10.127
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				7.366	26.209	77.772	151.433	10.899	36.807	113.099	222.087
					Dämmung	der Kellerdeck	е				
1-2 Whg.	199	175	2,34	7.320	21.960	73.200	146.400	10.980	32.940	109.800	219.600
3-10 Whg.	120	108	1,00	262	4.359	6.190	8.806	262	4.359	6.190	8.806
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				7.582	26.319	79.390	155.206	11.242	37.299	115.990	228.406
					Dämmung d	er Geschoßdec	ke				
1-2 Whg.	199	177	2,34	6.700	20.101	67.004	134.008	10.051	30.152	100.506	201.011
3-10 Whg.	120	106	1,00	314	5.231	7.428	10.567	314	5.231	7.428	10.567
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				7.014	25.332	74.432	144.575	10.364	35.383	107.934	211.579

¹⁰⁸ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

Tabelle 10-20: Szenarien der Energieeinsparung Teil 2 der Gemeinde Baumgartenberg

	Allgeme	ines			Szena	ario 1		Szenario 2				
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	į <u>,</u>	.	.	bei MFG [kWh/a]	[]	į <u>,</u>	.	
					Dämmung	der Außenwänd	de					
1-2 Whg.	199	110	2,34	27.369	82.106	273.686	547.373	41.053	123.159	410.529	821.059	
3-10 Whg.	120	67	1,00	1.151	19.181	27.238	38.746	1.151	19.181	27.238	38.746	
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0	
				28.520	101.287	300.924	586.119	42.204	142.340	437.767	859.805	
					Thermis	che Sanierung						
1-2 Whg.	199	67	2,34	40.775	122.324	407.746	815.493	61.162	183.486	611.620	1.223.239	
3-10 Whg.	120	42	1,00	1.700	28.336	40.237	57.239	1.700	28.336	40.237	57.239	
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0	
				42.475	150.660	447.984	872.732	62.862	211.822	651.857	1.280.478	
					Gesan	ntsanierung						
1-2 Whg.	199	46	2,34	47.197	141.590	471.967	943.934	70.795	212.385	707.951	1.415.901	
3-10 Whg.	120	29	1,00	1.988	33.132	47.047	66.926	1.988	33.132	47.047	66.926	
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0	
				49.185	174.722	519.014	1.010.860	72.783	245.517	754.997	1.482.827	

¹⁰⁹ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

10.1.5 Dimbach

Tabelle 10-21: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Dimbach

Sanierungspotential gesamt											
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential							
Wohngebäude mit 1-2 Whg.	246	1,05%	26	220							
Wohngebäude mit 3-10 Whg.	3	1,85%	1	2							
Wohngebäude mit >10 Whg.	0	2,91%	0	0							
Summe	249		27	222							

Tabelle 10-22: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Dimbach

Sanierungspotential 1945-1980											
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential							
Wohngebäude mit 1-2 Whg.	111	1,05%	12	99							
Wohngebäude mit 3-10 Whg.	2	1,85%	0	2							
Wohngebäude mit >10 Whg.	0	2,91%	0	0							
Summe	113		12	101							

Tabelle 10-23: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Dimbach für einzelne Sanierungsmaßnahmen

Art des	Ø						Sanierung	ısmaßnah	nmen				
Wohn- gebäu- des	HWB [kWh /m²a]	Tausch von Fenstern und Außentüren		Dämmung der Kellerdecke			Dämmung der Geschoßdecke		mung der enwände		ermische nierung	Gesamtsanierung	
		HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]
1-2 Whg.	207	183	310.837	179	362.029	186	271.931	114	1.215.500	67	1.822.431	47	2.093.543
3-10 Whg.	128	113	10.695	111	12.555	115	9.300	70	41.850	42	62.776	29	72.076
>10 Whg.	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ			321.532		374.584		281.231		1.257.350		1.885.206		2.165.619

Tabelle 10-24: Szenarien der Energieeinsparung Teil 1 der Gemeinde Dimbach

	Allgeme	ines			Szena	ario 1		Szenario 2				
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[KVVII]	[KVVII]	[KVVII]	bei MFG [kWh/a]	[KVVII]	[KWII]	[KVVII]	
					Tausch von l	Fenster und Tü	ren					
1-2 Whg.	207	183	1,98	6.217	18.650	62.167	124.335	9.325	27.975	93.251	186.502	
3-10 Whg.	128	113	1,00	160	5.348	6.471	8.075	160	5.348	6.471	8.075	
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0	
				6.377	23.998	68.638	132.410	9.486	33.323	99.722	194.577	
					Dämmung	der Kellerdeck	е					
1-2 Whg.	207	179	1,98	7.241	21.722	72.406	144.812	10.861	32.583	108.609	217.217	
3-10 Whg.	128	111	1,00	188	6.278	7.596	9.479	188	6.278	7.596	9.479	
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0	
				7.429	27.999	80.002	154.291	11.049	38.860	116.205	226.696	
					Dämmung d	er Geschoßdec	ke					
1-2 Whg.	207	186	1,98	5.439	16.316	54.386	108.773	8.158	24.474	81.579	163.159	
3-10 Whg.	128	115	1,00	140	4.650	5.627	7.022	140	4.650	5.627	7.022	
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0	
				5.578	20.966	60.013	115.794	8.297	29.124	87.206	170.180	

¹¹⁰ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

Tabelle 10-25: Szenarien der Energieeinsparung Teil 2 der Gemeinde Dimbach

	Allgeme	ines			Szena	ario 1		Szenario 2				
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[]	[]	[]	bei MFG [kWh/a]	[]	[]	[]	
					Dämmung	der Außenwänd	le					
1-2 Whg.	207	114	1,98	24.310	72.930	243.100	486.200	36.465	109.395	364.650	729.300	
3-10 Whg.	128	70	1,00	628	20.925	25.319	31.597	628	20.925	25.319	31.597	
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0	
				24.938	93.855	268.419	517.797	37.093	130.320	389.969	760.897	
					Thermis	che Sanierung						
1-2 Whg.	207	67	1,98	36.449	109.346	364.486	728.972	54.673	164.019	546.729	1.093.459	
3-10 Whg.	128	42	1,00	942	31.388	37.979	47.396	942	31.388	37.979	47.396	
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0	
				37.390	140.734	402.465	776.368	55.615	195.407	584.708	1.140.854	
					Gesan	ntsanierung						
1-2 Whg.	207	47	1,98	41.871	125.613	418.709	837.417	62.806	188.419	628.063	1.256.126	
3-10 Whg.	128	29	1,00	1.081	36.038	43.606	54.417	1.081	36.038	43.606	54.417	
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0	
				42.952	161.650	462.314	891.834	63.887	224.457	671.669	1.310.543	

¹¹¹ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

10.1.6 Grein

Tabelle 10-26: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Grein

	Sanierungs	potential gesamt		
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential
Wohngebäude mit 1-2 Whg.	649	1,05%	68	581
Wohngebäude mit 3-10 Whg.	55	1,85%	10	45
Wohngebäude mit >10 Whg.	3	2,91%	1	2
Summe	707		79	628

Tabelle 10-27: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Grein

	Sanierungsp	otential 1945-1980		
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential
Wohngebäude mit 1-2 Whg.	329	1,05%	35	294
Wohngebäude mit 3-10 Whg.	31	1,85%	6	25
Wohngebäude mit >10 Whg.	1	2,91%	0	1
Summe	361		41	320

Tabelle 10-28: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Grein für einzelne Sanierungsmaßnahmen

Art des	Ø						Sanierung	ısmaßnal	nmen				
Wohn- gebäu- des	HWB [kWh /m²a]	Fens	isch von stern und Sentüren	Dämmung der Kellerdecke				Dämmung der Außenwände		Thermische Sanierung		Gesamtsanierung	
		HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]
1-2 Whg.	197	174	878.347	174	880.165	175	850.030	109	3.393.884	67	5.047.701	46	5.854.605
3-10 Whg.	129	114	134.691	111	163.035	116	114.312	71	528.458	42	794.093	29	909.811
>10 Whg.	104	92	11.340	93	9.861	91	11.833	58	43.388	36	64.095	25	74.942
Σ			1.024.378		1.053.061		976.175		3.965.730		5.905.889		6.839.358

Tabelle 10-29: Szenarien der Energieeinsparung Teil 1 der Gemeinde Grein

	Allgeme	ines			Szena	ario 1		Szenario 2				
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[KVVII]	[KVVII]	[KVVII]	bei MFG [kWh/a]	[KVVII]	[KWII]	[KWII]	
					Tausch von I	Fenster und Tü	ren					
1-2 Whg.	197	174	5,88	17.567	52.701	175.669	351.339	26.350	79.051	263.504	527.008	
3-10 Whg.	129	114	1,00	3.879	5.388	32.541	71.333	3.879	5.388	32.541	71.333	
>10 Whg.	104	92	1,00	0	11.340	11.340	11.340	0	11.340	11.340	11.340	
				21.446	69.428	219.551	434.011	30.230	95.779	307.385	609.680	
					Dämmung	der Kellerdeck	е					
1-2 Whg.	197	174	5,88	17.603	52.810	176.033	352.066	26.405	79.215	264.050	528.099	
3-10 Whg.	129	111	1,00	4.695	6.521	39.389	86.343	4.695	6.521	39.389	86.343	
>10 Whg.	104	93	1,00	0	9.861	9.861	9.861	0	9.861	9.861	9.861	
				22.299	69.192	225.283	448.270	31.100	95.597	313.300	624.303	
					Dämmung d	er Geschoßdec	ke					
1-2 Whg.	197	175	5,88	17.001	51.002	170.006	340.012	25.501	76.503	255.009	510.018	
3-10 Whg.	129	116	1,00	3.292	4.572	27.618	60.540	3.292	4.572	27.618	60.540	
>10 Whg.	104	91	1,00	0	11.833	11.833	11.833	0	11.833	11.833	11.833	
				20.293	67.407	209.457	412.384	28.793	92.908	294.460	582.390	

-

¹¹² Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

Energieoptimierung Strudengau Mai 2012

Tabelle 10-30: Szenarien der Energieeinsparung Teil 2 der Gemeinde Grein

	Allgeme	ines			Szena	ario 1		Szenario 2				
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[]	[]	[]	bei MFG [kWh/a]	[]	[]	[]	
					Dämmung (der Außenwänd	le					
1-2 Whg.	197	109	5,88	67.878	203.633	678.777	1.357.553	101.817	305.450	1.018.165	2.036.330	
3-10 Whg.	129	71	1,00	15.220	21.138	127.676	279.872	15.220	21.138	127.676	279.872	
>10 Whg.	104	58	1,00	0	43.388	43.388	43.388	0	43.388	43.388	43.388	
				83.097	268.159	849.840	1.680.813	117.036	369.976	1.189.228	2.359.589	
					Thermiso	che Sanierung						
1-2 Whg.	197	67	5,88	100.954	302.862	1.009.540	2.019.080	151.431	454.293	1.514.310	3.028.620	
3-10 Whg.	129	42	1,00	22.870	31.764	191.853	420.552	22.870	31.764	191.853	420.552	
>10 Whg.	104	36	1,00	0	64.095	64.095	64.095	0	64.095	64.095	64.095	
				123.824	398.721	1.265.488	2.503.727	174.301	550.152	1.770.258	3.513.268	
					Gesan	ntsanierung						
1-2 Whg.	197	46	5,88	117.092	351.276	1.170.921	2.341.842	175.638	526.914	1.756.382	3.512.763	
3-10 Whg.	129	29	1,00	26.203	36.392	219.810	481.836	26.203	36.392	219.810	481.836	
>10 Whg.	104	25	1,00	0	74.942	74.942	74.942	0	74.942	74.942	74.942	
				143.295	462.611	1.465.674	2.898.620	201.841	638.249	2.051.134	4.069.541	

¹¹³ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

10.1.7 Klam

Tabelle 10-31: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Klam

	Sanierungs	potential gesamt		
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential
Wohngebäude mit 1-2 Whg.	183	1,05%	19	164
Wohngebäude mit 3-10 Whg.	6	1,85%	1	5
Wohngebäude mit >10 Whg.	0	2,91%	0	0
Summe	189		20	169

Tabelle 10-32: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Klam

	Sanierungsp	otential 1945-1980		
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential
Wohngebäude mit 1-2 Whg.	56	1,05%	6	50
Wohngebäude mit 3-10 Whg.	2	1,85%	0	2
Wohngebäude mit >10 Whg.	0	2,91%	0	0
Summe	58		6	52

Tabelle 10-33: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Klam für einzelne Sanierungsmaßnahmen

Art des	Ø						Sanierung	ısmaßnah	nmen				
Wohn- gebäu- des	HWB [kWh /m²a]	Fens	isch von stern und Sentüren	Dämmung der Kellerdecke		Dämmung der Geschoßdecke		Dämmung der Außenwände		Thermische Sanierung		Gesamtsanierung	
		HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]
1-2 Whg.	200	177	151.723	176	159.639	178	142.488	111	588.422	67	877.356	46	1.014.567
3-10 Whg.	128	113	10.695	111	12.555	115	9.300	70	41.850	42	62.776	29	72.076
>10 Whg.	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ			162.418		172.194		151.788		630.273		940.132		1.086.642

Tabelle 10-34: Szenarien der Energieeinsparung Teil 1 der Gemeinde Klam

	Allgeme	ines			Szena	ario 1		Szenario 2				
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[]	[]	[]	bei MFG [kWh/a]	[]	[]	[]	
					Tausch von I	Fenster und Tü	ren					
1-2 Whg.	200	177	1,00	3.034	9.103	30.345	60.689	4.552	13.655	45.517	91.034	
3-10 Whg.	128	113	1,00	160	5.348	6.471	8.075	160	5.348	6.471	8.075	
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0	
				3.195	14.451	36.815	68.764	4.712	19.003	51.988	99.109	
					Dämmung	der Kellerdeck	е					
1-2 Whg.	200	176	1,00	3.193	9.578	31.928	63.856	4.789	14.368	47.892	95.784	
3-10 Whg.	128	111	1,00	188	6.278	7.596	9.479	188	6.278	7.596	9.479	
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0	
				3.381	15.856	39.524	73.335	4.978	20.645	55.488	105.263	
					Dämmung d	er Geschoßdec	ke					
1-2 Whg.	200	178	1,00	2.850	8.549	28.498	56.995	4.275	12.824	42.746	85.493	
3-10 Whg.	128	115	1,00	140	4.650	5.627	7.022	140	4.650	5.627	7.022	
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0	
				2.989	13.199	34.124	64.017	4.414	17.474	48.373	92.514	

¹¹⁴ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

Tabelle 10-35: Szenarien der Energieeinsparung Teil 2 der Gemeinde Klam

	Allgeme	ines			Szena	ario 1		Szenario 2				
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[]	[]	[]	bei MFG [kWh/a]	[]	[]	[]	
					Dämmung (der Außenwänd	le					
1-2 Whg.	200	111	1,00	11.768	35.305	117.684	235.369	17.653	52.958	176.527	353.053	
3-10 Whg.	128	70	1,00	628	20.925	25.319	31.597	628	20.925	25.319	31.597	
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0	
				12.396	56.231	143.004	266.966	18.280	73.883	201.846	384.650	
					Thermiso	che Sanierung						
1-2 Whg.	200	67	1,00	17.547	52.641	175.471	350.943	26.321	78.962	263.207	526.414	
3-10 Whg.	128	42	1,00	942	31.388	37.979	47.396	942	31.388	37.979	47.396	
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0	
				18.489	84.029	213.450	398.338	27.262	110.350	301.186	573.809	
					Gesan	ntsanierung						
1-2 Whg.	200	46	1,00	20.291	60.874	202.913	405.827	30.437	91.311	304.370	608.740	
3-10 Whg.	128	29	1,00	1.081	36.038	43.606	54.417	1.081	36.038	43.606	54.417	
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0	
				21.372	96.912	246.519	460.244	31.518	127.349	347.976	663.157	

¹¹⁵ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

10.1.8 Mitterkirchen im Marchland

Tabelle 10-36: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Mitterkichen im Marchland

Sanierungspotential gesamt									
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential					
Wohngebäude mit 1-2 Whg.	427	1,05%	45	382					
Wohngebäude mit 3-10 Whg.	3	1,85%	1	2					
Wohngebäude mit >10 Whg.	0	2,91%	0	0					
Summe	430		46	384					

Tabelle 10-37: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Mitterkirchen im Marchland

Sanierungspotential 1945-1980									
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential					
Wohngebäude mit 1-2 Whg.	164	1,05%	17	147					
Wohngebäude mit 3-10 Whg.	2	1,85%	0	2					
Wohngebäude mit >10 Whg.	0	2,91%	0	0					
Summe	166		17	149					

Tabelle 10-38: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Mitterkirchen für einzelne Sanierungsmaßnahmen

Art des	Ø						Sanierung	ısmaßnal	nmen				
Wohn- gebäu- des	HWB [kWh /m²a]			Dämmung der Kellerdecke		Dämmung der Geschoßdecke		Dämmung der Außenwände		Thermische Sanierung		Gesamtsanierung	
		HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]
1-2 Whg.	197	175	440.882	174	447.272	176	423.539	110	1.705.110	67	2.537.584	46	2.941.041
3-10 Whg.	120	106	10.027	108	8.719	106	10.463	67	38.363	42	56.672	29	66.263
>10 Whg.	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ			450.909		455.991		434.002		1.743.473		2.594.256		3.007.304

Tabelle 10-39: Szenarien der Energieeinsparung Teil 1 der Gemeinde Mitterkirchen

	Allgeme	ines			Szena	ario 1		Szenario 2			
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]				bei MFG [kWh/a]			
					Tausch von l	Fenster und Tü	ren				
1-2 Whg.	197	175	2,94	8.818	26.453	88.176	176.353	13.226	39.679	132.265	264.529
3-10 Whg.	120	106	1,00	150	5.013	6.066	7.570	150	5.013	6.066	7.570
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				8.968	31.466	94.243	183.923	13.377	44.693	138.331	272.100
					Dämmung	der Kellerdeck	е				
1-2 Whg.	197	174	2,94	8.945	26.836	89.454	178.909	13.418	40.254	134.182	268.363
3-10 Whg.	120	108	1,00	131	4.359	5.275	6.583	131	4.359	5.275	6.583
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				9.076	31.196	94.729	185.491	13.549	44.614	139.456	274.946
					Dämmung d	er Geschoßdec	ke				
1-2 Whg.	197	176	2,94	8.471	25.412	84.708	169.416	12.706	38.119	127.062	254.123
3-10 Whg.	120	106	1,00	157	5.231	6.330	7.899	157	5.231	6.330	7.899
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				8.628	30.644	91.038	177.315	12.863	43.350	133.392	262.023

¹¹⁶ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

Tabelle 10-40: Szenarien der Energieeinsparung Teil 2 der Gemeinde Mitterkirchen

	Allgeme	ines			Szena	ario 1		Szenario 2			
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[]	[]	[]	bei MFG [kWh/a]	[]	[]	[]
					Dämmung	der Außenwänd	le				
1-2 Whg.	197	110	2,94	34.102	102.307	341.022	682.044	51.153	153.460	511.533	1.023.066
3-10 Whg.	120	67	1,00	575	19.181	23.210	28.964	575	19.181	23.210	28.964
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				34.678	121.488	364.232	711.008	51.729	172.641	534.743	1.052.030
					Thermis	che Sanierung					
1-2 Whg.	197	67	2,94	50.752	152.255	507.517	1.015.033	76.128	228.383	761.275	1.522.550
3-10 Whg.	120	42	1,00	850	28.336	34.287	42.788	850	28.336	34.287	42.788
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				51.602	180.591	541.804	1.057.821	76.978	256.719	795.562	1.565.338
					Gesan	ntsanierung					
1-2 Whg.	197	46	2,94	58.821	176.462	588.208	1.176.417	88.231	264.694	882.312	1.764.625
3-10 Whg.	120	29	1,00	994	33.132	40.089	50.029	994	33.132	40.089	50.029
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				59.815	209.594	628.297	1.226.445	89.225	297.825	922.402	1.814.653

-

Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

10.1.9 Münzbach

Tabelle 10-41: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Münzbach

Sanierungspotential gesamt									
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential					
Wohngebäude mit 1-2 Whg.	365	1,05%	38	327					
Wohngebäude mit 3-10 Whg.	16	1,85%	3	13					
Wohngebäude mit >10 Whg.	1	2,91%	0	1					
Summe	382		41	341					

Tabelle 10-42: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Münzbach

Sanierungspotential 1945-1980									
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential					
Wohngebäude mit 1-2 Whg.	119	1,05%	12	107					
Wohngebäude mit 3-10 Whg.	4	1,85%	1	3					
Wohngebäude mit >10 Whg.	0	2,91%	0	0					
Summe	123		13	110					

Tabelle 10-43: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Münzbach für einzelne Sanierungsmaßnahmen

Art des	Ø						Sanierung	gsmaßnah	nmen				
Wohn- gebäu- des	HWB [kWh /m²a]			Dämmung der Kellerdecke		Dämmung der Geschoßdecke		Dämmung der Außenwände		Thermische Sanierung		Gesamtsanierung	
		HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]
1-2 Whg.	201	178	326.340	176	348.750	179	303.399	111	1.267.169	67	1.890.941	46	2.184.528
3-10 Whg.	125	111	15.708	110	16.847	112	14.570	69	61.012	42	91.063	29	105.178
>10 Whg.	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ			342.048		365.597		317.969		1.328.182		1.982.004		2.289.706

Tabelle 10-44: Szenarien der Energieeinsparung Teil 1 der Gemeinde Münzbach

	Allgeme	ines			Szena	ario 1		Szenario 2			
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	,,			bei MFG [kWh/a]	Į <u>,</u>		,,
					Tausch von I	Fenster und Tü	ren				
1-2 Whg.	201	178	2,14	6.527	19.580	65.268	130.536	9.790	29.371	97.902	195.804
3-10 Whg.	125	111	1,00	314	5.236	7.435	10.577	314	5.236	7.435	10.577
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				6.841	24.817	72.703	141.113	10.104	34.607	105.337	206.381
					Dämmung	der Kellerdeck	е				
1-2 Whg.	201	176	2,14	6.975	20.925	69.750	139.500	10.463	31.388	104.625	209.250
3-10 Whg.	125	110	1,00	337	5.616	7.974	11.343	337	5.616	7.974	11.343
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				7.312	26.541	77.724	150.843	10.799	37.003	112.599	220.593
					Dämmung d	er Geschoßdec	ke				
1-2 Whg.	201	179	2,14	6.068	18.204	60.680	121.360	9.102	27.306	91.020	182.040
3-10 Whg.	125	112	1,00	291	4.857	6.897	9.811	291	4.857	6.897	9.811
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				6.359	23.061	67.576	131.170	9.393	32.163	97.916	191.850

¹¹⁸ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

Tabelle 10-45: Szenarien der Energieeinsparung Teil 2 der Gemeinde Münzbach

	Allgeme	ines			Szena	ario 1		Szenario 2			
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[]	[]	[]	bei MFG [kWh/a]	[]	[]	[]
					Dämmung (der Außenwänd	le				
1-2 Whg.	201	111	2,14	25.343	76.030	253.434	506.868	38.015	114.045	380.151	760.302
3-10 Whg.	125	69	1,00	1.220	20.337	28.879	41.082	1.220	20.337	28.879	41.082
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				26.564	96.368	282.313	547.949	39.235	134.383	409.030	801.383
					Thermise	che Sanierung					
1-2 Whg.	201	67	2,14	37.819	113.456	378.188	756.376	56.728	170.185	567.282	1.134.565
3-10 Whg.	125	42	1,00	1.821	30.354	43.103	61.316	1.821	30.354	43.103	61.316
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				39.640	143.811	421.292	817.692	58.549	200.539	610.386	1.195.881
					Gesan	ntsanierung					
1-2 Whg.	201	46	2,14	43.691	131.072	436.906	873.811	65.536	196.607	655.358	1.310.717
3-10 Whg.	125	29	1,00	2.104	35.059	49.784	70.820	2.104	35.059	49.784	70.820
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				45.794	166.131	486.690	944.631	67.639	231.667	705.143	1.381.536

¹¹⁹ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

10.1.10 Naarn im Marchlande

Tabelle 10-46: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Naarn im Marchlande

Sanierungspotential gesamt									
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential					
Wohngebäude mit 1-2 Whg.	739	1,05%	78	661					
Wohngebäude mit 3-10 Whg.	31	1,85%	6	25					
Wohngebäude mit >10 Whg.	1	2,91%	0	1					
Summe	771		84	687					

Tabelle 10-47: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Naarn im Marchlande

Sanierungspotential 1945-1980									
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential					
Wohngebäude mit 1-2 Whg.	317	1,05%	33	284					
Wohngebäude mit 3-10 Whg.	8	1,85%	1	7					
Wohngebäude mit >10 Whg.	1	2,91%	0	1					
Summe	326		34	292					

Tabelle 10-48: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Naarn für einzelne Sanierungsmaßnahmen

Art des Wohn- gebäu- des	ø HWB [kWh /m²a]	Sanierungsmaßnahmen												
		Tausch von Fenstern und Außentüren		Dämmung der Kellerdecke		Dämmung der Geschoßdecke		Dämmung der Außenwände		Thermische Sanierung		Gesamtsanierung		
		HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	
1-2 Whg.	196	174	847.432	174	845.876	175	822.004	109	3.273.486	67	4.867.676	46	5.647.127	
3-10 Whg.	129	114	37.767	111	45.977	117	31.903	71	148.253	42	222.849	29	255.221	
>10 Whg.	104	92	11.340	93	9.861	91	11.833	58	43.388	36	64.095	25	74.942	
Σ			896.539		901.714		865.740		3.465.127		5.154.621		5.977.290	

Tabelle 10-49: Szenarien der Energieeinsparung Teil 1 der Gemeinde Naarn

	Allgeme	ines			Szena	ario 1		Szenario 2					
Art des Wohn- gebäudes	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013 bei MFG [kWh/a]	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013 bei MFG [kWh/a]	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]		
	Vor Sanierung	Nach Sanierung											
Tausch von Fenster und Türen													
1-2 Whg.	196	174	5,68	16.949	50.846	169.486	338.973	25.423	76.269	254.230	508.459		
3-10 Whg.	129	114	1,00	971	5.395	12.193	21.905	971	5.395	12.193	21.905		
>10 Whg.	104	92	1,00	0	11.340	11.340	11.340	0	11.340	11.340	11.340		
				17.920	67.581	193.020	372.218	26.394	93.004	277.763	541.704		
					Dämmung	der Kellerdeck	е						
1-2 Whg.	196	174	5,68	16.918	50.753	169.175	338.350	25.376	76.129	253.763	507.525		
3-10 Whg.	129	111	1,00	1.182	6.568	14.844	26.667	1.182	6.568	14.844	26.667		
>10 Whg.	104	93	1,00	0	9.861	9.861	9.861	0	9.861	9.861	9.861		
				18.100	67.182	193.880	374.878	26.559	92.558	278.468	544.053		
					Dämmung d	er Geschoßdec	ke						
1-2 Whg.	196	175	5,68	16.440	49.320	164.401	328.802	24.660	73.980	246.601	493.203		
3-10 Whg.	129	117	1,00	820	4.558	10.300	18.504	820	4.558	10.300	18.504		
>10 Whg.	104	91	1,00	0	11.833	11.833	11.833	0	11.833	11.833	11.833		
				17.260	65.711	186.534	359.138	25.480	90.371	268.734	523.539		

¹²⁰ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

Tabelle 10-50: Szenarien der Energieeinsparung Teil 2 der Gemeinde Naarn

	Allgeme	ines			Szena	ario 1		Szenario 2			
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[]	[]	[]	bei MFG [kWh/a]	[]	[]	[]
					Dämmung (der Außenwänd	le				
1-2 Whg.	196	109	5,68	65.470	196.409	654.697	1.309.395	98.205	294.614	982.046	1.964.092
3-10 Whg.	129	71	1,00	3.812	21.179	47.865	85.987	3.812	21.179	47.865	85.987
>10 Whg.	104	58	1,00	0	43.388	43.388	43.388	0	43.388	43.388	43.388
				69.282	260.976	745.950	1.438.769	102.017	359.180	1.073.298	2.093.466
					Thermiso	che Sanierung					
1-2 Whg.	196	67	5,68	97.354	292.061	973.535	1.947.070	146.030	438.091	1.460.303	2.920.606
3-10 Whg.	129	42	1,00	5.730	31.836	71.948	129.252	5.730	31.836	71.948	129.252
>10 Whg.	104	36	1,00	0	64.095	64.095	64.095	0	64.095	64.095	64.095
				103.084	387.992	1.109.579	2.140.418	151.761	534.022	1.596.347	3.113.954
					Gesan	ntsanierung					
1-2 Whg.	196	46	5,68	112.943	338.828	1.129.425	2.258.851	169.414	508.241	1.694.138	3.388.276
3-10 Whg.	129	29	1,00	6.563	36.460	82.400	148.028	6.563	36.460	82.400	148.028
>10 Whg.	104	25	1,00	0	74.942	74.942	74.942	0	74.942	74.942	74.942
				119.505	450.230	1.286.768	2.481.821	175.977	619.644	1.851.480	3.611.247

¹²¹ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

10.1.11 Perg

Tabelle 10-51: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Perg

Sanierungspotential gesamt											
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential							
Wohngebäude mit 1-2 Whg.	1.259	1,05%	132	1.127							
Wohngebäude mit 3-10 Whg.	106	1,85%	20	86							
Wohngebäude mit >10 Whg.	36	2,91%	10	26							
Summe	1.401		162	1.239							

Tabelle 10-52: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Perg

Sanierungspotential 1945-1980												
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential								
Wohngebäude mit 1-2 Whg.	573	1,05%	60	513								
Wohngebäude mit 3-10 Whg.	40	1,85%	7	33								
Wohngebäude mit >10 Whg.	24	2,91%	7	17								
Summe	637		74	563								

Tabelle 10-53: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Perg für einzelne Sanierungsmaßnahmen

Art des	Ø		Sanierungsmaßnahmen											
Wohn- gebäu- des	HWB [kWh /m²a]	Tausch von Fenstern und Außentüren		Dämmung der Kellerdecke		Dämmung der Geschoßdecke		Dämmung der Außenwände		Thermische Sanierung		Gesamtsanierung		
		HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	
1-2 Whg.	198	175	1.541.356	175	1.572.578	176	1.475.647	110	5.963.726	67	8.877.920	46	10.285.899	
3-10 Whg.	127	112	174.798	110	197.137	114	156.604	70	681.689	42	1.020.230	29	1.174.532	
>10 Whg.	104	92	194.587	94	176.173	92	199.066	58	746.498	36	1.104.817	25	1.288.953	
Σ			1.910.741		1.945.889		1.831.318		7.391.913		11.002.967		12.749.383	

Tabelle 10-54: Szenarien der Energieeinsparung Teil 1 der Gemeinde Perg

	Allgeme	ines			Szena	ario 1		Szenario 2			
Art des Wohn-	ø HWB	ø HWB [kWh/a]		Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw.	Σ 2013	Σ 2020 [kWh]	Σ 2030
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[KWII]	[KWII]		nach 2013 bei MFG [kWh/a]	[kWh]	[KWII]	[kWh]
					Tausch von l	enster und Tü	ren				
1-2 Whg.	198	175	10,26	30.827	92.481	308.271	616.543	46.241	138.722	462.407	924.814
3-10 Whg.	127	112	1,00	5.085	5.297	40.892	91.742	5.085	5.297	40.892	91.742
>10 Whg.	104	92	1,00	5.494	11.446	49.906	104.848	5.494	11.446	49.906	104.848
				41.406	109.225	399.069	813.133	56.820	155.465	553.205	1.121.404
					Dämmung	der Kellerdeck	е				
1-2 Whg.	198	175	10,26	31.452	94.355	314.516	629.031	47.177	141.532	471.773	943.547
3-10 Whg.	127	110	1,00	5.735	5.974	46.118	103.467	5.735	5.974	46.118	103.467
>10 Whg.	104	94	1,00	4.974	10.363	45.183	94.926	4.974	10.363	45.183	94.926
				42.161	110.692	405.817	827.425	57.887	157.869	563.075	1.141.940
					Dämmung d	er Geschoßdec	ke				
1-2 Whg.	198	176	10,26	29.513	88.539	295.129	590.259	44.269	132.808	442.694	885.388
3-10 Whg.	127	114	1,00	4.556	4.746	36.636	82.193	4.556	4.746	36.636	82.193
>10 Whg.	104	92	1,00	5.621	11.710	51.055	107.261	5.621	11.710	51.055	107.261
				39.689	104.994	382.820	779.714	54.446	149.264	530.385	1.074.843

¹²² Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

Tabelle 10-55: Szenarien der Energieeinsparung Teil 2 der Gemeinde Perg

	Allgeme	ines		Szenario 1				Szenario 2			
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw.	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[]	Į <u>,</u>	[]	bei MFG [kWh/a]	Į <u>,</u>	[]	.
					Dämmung (der Außenwänd	le				
1-2 Whg.	198	110	10,26	119.275	357.824	1.192.745	2.385.490	178.912	536.735	1.789.118	3.578.236
3-10 Whg.	127	70	1,00	19.831	20.657	159.474	357.783	19.831	20.657	159.474	357.783
>10 Whg.	104	58	1,00	21.078	43.912	191.455	402.230	21.078	43.912	191.455	402.230
				160.183	422.392	1.543.674	3.145.504	219.820	601.304	2.140.046	4.338.249
					Thermiso	che Sanierung					
1-2 Whg.	198	67	10,26	177.558	532.675	1.775.584	3.551.168	266.338	799.013	2.663.376	5.326.752
3-10 Whg.	127	42	1,00	29.679	30.916	238.672	535.466	29.679	30.916	238.672	535.466
>10 Whg.	104	36	1,00	31.195	64.989	283.353	595.301	31.195	64.989	283.353	595.301
				238.433	628.581	2.297.609	4.681.936	327.212	894.918	3.185.401	6.457.520
					Gesan	ntsanierung					
1-2 Whg.	198	46	10,26	205.718	617.154	2.057.180	4.114.360	308.577	925.731	3.085.770	6.171.539
3-10 Whg.	127	29	1,00	34.168	35.592	274.769	616.451	34.168	35.592	274.769	616.451
>10 Whg.	104	25	1,00	36.394	75.821	330.578	694.518	36.394	75.821	330.578	694.518
				276.280	728.567	2.662.527	5.425.329	379.139	1.037.144	3.691.117	7.482.508

¹²³ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

10.1.12 Pabneukirchen

Tabelle 10-56: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Pabneukirchen

Sanierungspotential gesamt											
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential							
Wohngebäude mit 1-2 Whg.	359	1,05%	38	321							
Wohngebäude mit 3-10 Whg.	9	1,85%	2	7							
Wohngebäude mit >10 Whg.	0	2,91%	0	0							
Summe	368		40	328							

Tabelle 10-57: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Pabneukirchen

Sanierungspotential 1945-1980											
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential							
Wohngebäude mit 1-2 Whg.	154	1,05%	16	138							
Wohngebäude mit 3-10 Whg.	3	1,85%	1	2							
Wohngebäude mit >10 Whg.	0	2,91%	0	0							
Summe	157		17	140							

Tabelle 10-58: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Pabneukirchen für einzelne Sanierungsmaßnahmen

Art des	Ø						Sanierung	ısmaßnal	nmen				
Wohn- gebäu- des	HWB [kWh /m²a]	Fens	Tausch von Dämmung der Dämmung der Dämmung der enstern und Kellerdecke Geschoßdecke Außenwände Außentüren		Thermische Sanierung		Gesamtsanierung						
		HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]
1-2 Whg.	204	180	427.073	178	476.858	183	385.362	112	1.664.160	67	2.489.243	46	2.867.608
3-10 Whg.	120	106	10.027	108	8.719	106	10.463	67	38.363	42	56.672	29	66.263
>10 Whg.	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ			437.100		485.577		395.824		1.702.523		2.545.916		2.933.872

Tabelle 10-59: Szenarien der Energieeinsparung Teil 1 der Gemeinde Pabneukirchen

	Allgeme	ines			Szena	ario 1		Szenario 2			
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030	Δ bei δ bzw.	Σ 2013	Σ 2020	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	,		[kWh]	nach 2013 bei MFG [kWh/a]	[kWh]	[kWh]	įkwnj
					Tausch von l	Fenster und Tü	ren				
1-2 Whg.	204	180	2,76	8.541	25.624	85.415	170.829	12.812	38.437	128.122	256.244
3-10 Whg.	120	106	1,00	150	5.013	6.066	7.570	150	5.013	6.066	7.570
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				8.692	30.638	91.481	178.399	12.963	43.450	134.188	263.814
					Dämmung	der Kellerdeck	е				
1-2 Whg.	204	178	2,76	9.537	28.611	95.372	190.743	14.306	42.917	143.057	286.115
3-10 Whg.	120	108	1,00	131	4.359	5.275	6.583	131	4.359	5.275	6.583
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				9.668	32.971	100.647	197.326	14.437	47.277	148.332	292.698
					Dämmung d	er Geschoßdec	ke				
1-2 Whg.	204	183	2,76	7.707	23.122	77.072	154.145	11.561	34.683	115.609	231.217
3-10 Whg.	120	106	1,00	157	5.231	6.330	7.899	157	5.231	6.330	7.899
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				7.864	28.353	83.402	162.044	11.718	39.914	121.938	239.116

¹²⁴ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

Tabelle 10-60: Szenarien der Energieeinsparung Teil 2 der Gemeinde Pabneukirchen

	Allgeme	ines			Szena	ario 1		Szenario 2			
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]				bei MFG [kWh/a]	[]	[]	[]
					Dämmung	der Außenwänd	le				
1-2 Whg.	204	112	2,76	33.283	99.850	332.832	665.664	49.925	149.774	499.248	998.496
3-10 Whg.	120	67	1,00	575	19.181	23.210	28.964	575	19.181	23.210	28.964
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				33.859	119.031	356.042	694.628	50.500	168.956	522.458	1.027.460
					Thermis	che Sanierung					
1-2 Whg.	204	67	2,76	49.785	149.355	497.849	995.697	74.677	224.032	746.773	1.493.546
3-10 Whg.	120	42	1,00	850	28.336	34.287	42.788	850	28.336	34.287	42.788
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				50.635	177.691	532.135	1.038.485	75.527	252.368	781.060	1.536.334
					Gesan	ntsanierung					
1-2 Whg.	204	46	2,76	57.352	172.057	573.522	1.147.043	86.028	258.085	860.283	1.720.565
3-10 Whg.	120	29	1,00	994	33.132	40.089	50.029	994	33.132	40.089	50.029
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				58.346	205.188	613.611	1.197.072	87.022	291.216	900.372	1.770.594

-

¹²⁵ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

10.1.13 Rechberg

Tabelle 10-61: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Rechberg

Sanierungspotential gesamt											
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential							
Wohngebäude mit 1-2 Whg.	195	1,05%	20	175							
Wohngebäude mit 3-10 Whg.	9	1,85%	2	7							
Wohngebäude mit >10 Whg.	0	2,91%	0	0							
Summe	204		22	182							

Tabelle 10-62: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Rechberg

Sanierungspotential 1945-1980												
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential								
Wohngebäude mit 1-2 Whg.	57	1,05%	6	51								
Wohngebäude mit 3-10 Whg.	3	1,85%	1	2								
Wohngebäude mit >10 Whg.	0	2,91%	0	0								
Summe	60		7	53								

Tabelle 10-63: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Rechberg für einzelne Sanierungsmaßnahmen

Art des	Ø						Sanierung	gsmaßnal	nmen				
Wohn- gebäu- des	HWB [kWh /m²a]	Tausch von Fenstern und Außentüren		Dämmung der Kellerdecke		Dämmung der Geschoßdecke			mung der enwände		ermische nierung	Gesamtsanierung	
		HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]
1-2 Whg.	199	176	154.017	175	159.663	177	146.008	110	596.636	67	888.914	46	1.028.882
3-10 Whg.	128	113	10.695	111	12.555	115	9.300	70	41.850	42	62.776	29	72.076
>10 Whg.	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ			164.712		172.218		155.308		638.486		951.690		1.100.957

Tabelle 10-64: Szenarien der Energieeinsparung Teil 1 der Gemeinde Rechberg

	Allgeme	ines			Szena	ario 1		Szenario 2			
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]				bei MFG [kWh/a]			
					Tausch von l	Fenster und Tü	ren			'	
1-2 Whg.	199	176	1,02	3.080	9.241	30.803	61.607	4.621	13.862	46.205	92.410
3-10 Whg.	128	113	1,00	160	5.348	6.471	8.075	160	5.348	6.471	8.075
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				3.241	14.589	37.274	69.682	4.781	19.209	52.676	100.485
					Dämmung	der Kellerdeck	е				
1-2 Whg.	199	175	1,02	3.193	9.580	31.933	63.865	4.790	14.370	47.899	95.798
3-10 Whg.	128	111	1,00	188	6.278	7.596	9.479	188	6.278	7.596	9.479
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				3.382	15.857	39.528	73.344	4.978	20.647	55.495	105.277
					Dämmung d	er Geschoßdec	ke				
1-2 Whg.	199	177	1,02	2.920	8.760	29.202	58.403	4.380	13.141	43.802	87.605
3-10 Whg.	128	115	1,00	140	4.650	5.627	7.022	140	4.650	5.627	7.022
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				3.060	13.411	34.828	65.425	4.520	17.791	49.429	94.626

¹²⁶ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

Tabelle 10-65: Szenarien der Energieeinsparung Teil 2 der Gemeinde Rechberg

	Allgeme	ines			Szena	ario 1		Szenario 2				
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[]	[]	[]	bei MFG [kWh/a]	[]	[]	[]	
					Dämmung (der Außenwänd	le					
1-2 Whg.	199	110	1,02	11.933	35.798	119.327	238.654	17.899	53.697	178.991	357.982	
3-10 Whg.	128	70	1,00	628	20.925	25.319	31.597	628	20.925	25.319	31.597	
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0	
				12.560	56.723	144.647	270.251	18.527	74.622	204.310	389.579	
					Thermise	che Sanierung						
1-2 Whg.	199	67	1,02	17.778	53.335	177.783	355.566	26.667	80.002	266.674	533.348	
3-10 Whg.	128	42	1,00	942	31.388	37.979	47.396	942	31.388	37.979	47.396	
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0	
				18.720	84.723	215.762	402.961	27.609	111.390	304.653	580.744	
					Gesan	ntsanierung						
1-2 Whg.	199	46	1,02	20.578	61.733	205.776	411.553	30.866	92.599	308.665	617.329	
3-10 Whg.	128	29	1,00	1.081	36.038	43.606	54.417	1.081	36.038	43.606	54.417	
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0	
				21.659	97.771	249.382	465.970	31.948	128.637	352.270	671.746	

¹²⁷ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

10.1.14 St. Nikola an der Donau

Tabelle 10-66: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde St. Nikola an der Donau

Sanierungspotential gesamt												
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential								
Wohngebäude mit 1-2 Whg.	215	1,05%	23	192								
Wohngebäude mit 3-10 Whg.	17	1,85%	3	14								
Wohngebäude mit >10 Whg.	4	2,91%	1	3								
Summe	236		27	209								

Tabelle 10-67: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde St. Nikola an der Donau

	Sanierungspotential 1945-1980												
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential									
Wohngebäude mit 1-2 Whg.	71	1,05%	7	64									
Wohngebäude mit 3-10 Whg.	5	1,85%	1	4									
Wohngebäude mit >10 Whg.	3	2,91%	1	2									
Summe	79		9	70									

Tabelle 10-68: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde St. Nikola für einzelne Sanierungsmaßnahmen

Art des	Ø						Sanierung	gsmaßnal	nmen				
Wohn- gebäu- des	HWB [kWh /m²a]	Tausch von Fenstern und Außentüren		Dämmung der Kellerdecke		Dämmung der Geschoßdecke			mung der enwände		ermische nierung	Gesamtsanierung	
		HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]
1-2 Whg.	203	180	197.510	177	218.710	182	179.262	112	769.108	67	1.149.905	46	1.325.409
3-10 Whg.	128	113	21.390	111	25.110	115	18.600	70	83.701	42	125.551	29	144.151
>10 Whg.	104	92	22.680	93	19.722	91	23.666	58	86.775	36	128.191	25	149.885
Σ			241.580		263.542		221.528		939.584		1.403.647		1.619.445

Tabelle 10-69: Szenarien der Energieeinsparung Teil 1 der Gemeinde St. Nikola

	Allgeme	ines			Szena	ario 1			Szena	ario 2	
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[KVVII]	[KVVII]	[KVVII]	bei MFG [kWh/a]	[KVVII]	[KVVII]	[KVVII]
					Tausch von I	Fenster und Tü	ren			'	
1-2 Whg.	203	180	1,28	3.950	11.851	39.502	79.004	5.925	17.776	59.253	118.506
3-10 Whg.	128	113	1,00	481	5.348	8.717	13.529	481	5.348	8.717	13.529
>10 Whg.	104	92	1,00	340	11.340	13.721	17.123	340	11.340	13.721	17.123
				4.772	28.538	61.940	109.657	6.747	34.463	81.691	149.159
					Dämmung	der Kellerdeck	е				
1-2 Whg.	203	177	1,28	4.374	13.123	43.742	87.484	6.561	19.684	65.613	131.226
3-10 Whg.	128	111	1,00	565	6.278	10.232	15.882	565	6.278	10.232	15.882
>10 Whg.	104	93	1,00	296	9.861	11.932	14.890	296	9.861	11.932	14.890
				5.235	29.261	65.906	118.256	7.422	35.822	87.777	161.998
					Dämmung d	er Geschoßdec	ke				
1-2 Whg.	203	182	1,28	3.585	10.756	35.852	71.705	5.378	16.134	53.779	107.557
3-10 Whg.	128	115	1,00	419	4.650	7.580	11.765	419	4.650	7.580	11.765
>10 Whg.	104	91	1,00	355	11.833	14.318	17.868	355	11.833	14.318	17.868
				4.359	27.239	57.750	101.337	6.151	32.617	75.676	137.189

¹²⁸ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

Tabelle 10-70: Szenarien der Energieeinsparung Teil 2 der Gemeinde St. Nikola

	Allgeme	ines			Szena	ario 1		Szenario 2			
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[]	[]	[]	bei MFG [kWh/a]	[]	[]	[]
					Dämmung (der Außenwänd	le				
1-2 Whg.	203	112	1,28	15.382	46.146	153.822	307.643	23.073	69.220	230.732	461.465
3-10 Whg.	128	70	1,00	1.883	20.925	34.108	52.941	1.883	20.925	34.108	52.941
>10 Whg.	104	58	1,00	1.302	43.388	52.499	65.515	1.302	43.388	52.499	65.515
				18.567	110.459	240.429	426.099	26.258	133.533	317.339	579.921
					Thermise	che Sanierung					
1-2 Whg.	203	67	1,28	22.998	68.994	229.981	459.962	34.497	103.491	344.971	689.943
3-10 Whg.	128	42	1,00	2.825	31.388	51.162	79.411	2.825	31.388	51.162	79.411
>10 Whg.	104	36	1,00	1.923	64.095	77.555	96.784	1.923	64.095	77.555	96.784
				27.746	164.477	358.698	636.157	39.245	198.975	473.689	866.138
					Gesan	ntsanierung					
1-2 Whg.	203	46	1,28	26.508	79.525	265.082	530.164	39.762	119.287	397.623	795.246
3-10 Whg.	128	29	1,00	3.243	36.038	58.742	91.176	3.243	36.038	58.742	91.176
>10 Whg.	104	25	1,00	2.248	74.942	90.680	113.163	2.248	74.942	90.680	113.163
				32.000	190.505	414.504	734.502	45.254	230.267	547.045	999.584

¹²⁹ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

10.1.15 St. Thomas am Blasenstein

Tabelle 10-71: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde St. Thomas am Blasenstein

Sanierungspotential gesamt												
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential								
Wohngebäude mit 1-2 Whg.	210	1,05%	22	188								
Wohngebäude mit 3-10 Whg.	5	1,85%	1	4								
Wohngebäude mit >10 Whg.	0	2,91%	0	0								
Summe	215		23	192								

Tabelle 10-72: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde St. Thomas am Blasenstein

Sanierungspotential 1945-1980												
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential								
Wohngebäude mit 1-2 Whg.	71	1,05%	7	64								
Wohngebäude mit 3-10 Whg.	3	1,85%	1	2								
Wohngebäude mit >10 Whg.	0	2,91%	0	0								
Summe	74		8	66								

Tabelle 10-73: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde St. Thomas für einzelne Sanierungsmaßnahmen

Art des	Ø						Sanierung	gsmaßnal	nmen				
Wohn- gebäu- des	HWB [kWh /m²a]	Tausch von Fenstern und Außentüren		Dämmung der Kellerdecke		Dämmung der Geschoßdecke			mung der enwände		ermische nierung	Gesamtsanierung	
		HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]
1-2 Whg.	203	179	196.940	177	216.206	181	179.815	112	766.354	67	1.145.250	46	1.320.784
3-10 Whg.	128	113	10.695	111	12.555	115	9.300	70	41.850	42	62.776	29	72.076
>10 Whg.	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ			207.635		228.761		189.115		808.205		1.208.026		1.392.859

Tabelle 10-74: Szenarien der Energieeinsparung Teil 1 der Gemeinde St. Thomas

	Allgeme	ines			Szena	ario 1			Szena	ario 2	
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[KVVII]	[KVVII]	[KVVII]	bei MFG [kWh/a]	[KVVII]	[KVVII]	[KVVII]
					Tausch von l	Fenster und Tü	ren				
1-2 Whg.	203	179	1,28	3.939	11.816	39.388	78.776	5.908	17.725	59.082	118.164
3-10 Whg.	128	113	1,00	160	5.348	6.471	8.075	160	5.348	6.471	8.075
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				4.099	17.164	45.859	86.851	6.069	23.072	65.553	126.239
					Dämmung	der Kellerdeck	е				
1-2 Whg.	203	177	1,28	4.324	12.972	43.241	86.482	6.486	19.459	64.862	129.724
3-10 Whg.	128	111	1,00	188	6.278	7.596	9.479	188	6.278	7.596	9.479
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				4.512	19.250	50.837	95.962	6.675	25.736	72.458	139.203
					Dämmung d	er Geschoßdec	ke				
1-2 Whg.	203	181	1,28	3.596	10.789	35.963	71.926	5.394	16.183	53.944	107.889
3-10 Whg.	128	115	1,00	140	4.650	5.627	7.022	140	4.650	5.627	7.022
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				3.736	15.439	41.590	78.948	5.534	20.833	59.571	114.911

¹³⁰ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

Tabelle 10-75: Szenarien der Energieeinsparung Teil 2 der Gemeinde St. Thomas

	Allgeme	ines			Szena	ario 1			Szena	ario 2	
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[]	[]	[]	bei MFG [kWh/a]	[]	[]	[]
					Dämmung (der Außenwänd	le				
1-2 Whg.	203	112	1,28	15.327	45.981	153.271	306.542	22.991	68.972	229.906	459.813
3-10 Whg.	128	70	1,00	628	20.925	25.319	31.597	628	20.925	25.319	31.597
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				15.955	66.906	178.590	338.139	23.618	89.897	255.226	491.410
					Thermise	che Sanierung					
1-2 Whg.	203	67	1,28	22.905	68.715	229.050	458.100	34.358	103.073	343.575	687.150
3-10 Whg.	128	42	1,00	942	31.388	37.979	47.396	942	31.388	37.979	47.396
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				23.847	100.103	267.029	505.496	35.299	134.460	381.554	734.546
					Gesan	ntsanierung					
1-2 Whg.	203	46	1,28	26.416	79.247	264.157	528.314	39.624	118.871	396.235	792.470
3-10 Whg.	128	29	1,00	1.081	36.038	43.606	54.417	1.081	36.038	43.606	54.417
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				27.497	115.285	307.763	582.731	40.705	154.908	439.841	846.887

¹³¹ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

10.1.16 Saxen

Tabelle 10-76: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Saxen

	Sanierungspotential gesamt												
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential									
Wohngebäude mit 1-2 Whg.	411	1,05%	43	368									
Wohngebäude mit 3-10 Whg.	6	1,85%	1	5									
Wohngebäude mit >10 Whg.	4	2,91%	1	3									
Summe	421		45	376									

Tabelle 10-77: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Saxen

	Sanierungsp	otential 1945-1980		
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential
Wohngebäude mit 1-2 Whg.	158	1,05%	17	141
Wohngebäude mit 3-10 Whg.	3	1,85%	1	2
Wohngebäude mit >10 Whg.	0	2,91%	0	0
Summe	161		18	143

Tabelle 10-78: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Saxen für einzelne Sanierungsmaßnahmen

Art des	Ø						Sanierung	ısmaßnah	nmen				
Wohn- gebäu- des	HWB [kWh /m²a]	Fens	isch von stern und Sentüren	Dämmung der Kellerdecke		Dämmung der Geschoßdecke		Dämmung der Außenwände		Thermische Sanierung		Gesamtsanierung	
		HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]
1-2 Whg.	196	173	419.713	174	415.701	174	408.971	109	1.620.355	67	2.408.530	46	2.795.500
3-10 Whg.	128	113	10.695	111	12.555	115	9.300	70	41.850	42	62.776	29	72.076
>10 Whg.	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ			430.408		428.256		418.271		1.662.205		2.471.306		2.867.576

Tabelle 10-79: Szenarien der Energieeinsparung Teil 1 der Gemeinde Saxen

	Allgeme	ines			Szena	ario 1			Szena	ario 2	
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[KVVII]	[KVVII]	[KVVII]	bei MFG [kWh/a]	[KVVII]	[KVVII]	[KVVII]
					Tausch von l	Fenster und Tü	ren				
1-2 Whg.	196	173	2,82	8.394	25.183	83.943	167.885	12.591	37.774	125.914	251.828
3-10 Whg.	128	113	1,00	160	5.348	6.471	8.075	160	5.348	6.471	8.075
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				8.555	30.530	90.413	175.960	12.752	43.122	132.385	259.903
					Dämmung	der Kellerdeck	е				
1-2 Whg.	196	174	2,82	8.314	24.942	83.140	166.280	12.471	37.413	124.710	249.421
3-10 Whg.	128	111	1,00	188	6.278	7.596	9.479	188	6.278	7.596	9.479
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				8.502	31.220	90.736	175.760	12.659	43.691	132.306	258.900
					Dämmung d	er Geschoßdec	ke				
1-2 Whg.	196	174	2,82	8.179	24.538	81.794	163.589	12.269	36.807	122.691	245.383
3-10 Whg.	128	115	1,00	140	4.650	5.627	7.022	140	4.650	5.627	7.022
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				8.319	29.188	87.421	170.610	12.409	41.457	128.318	252.404

¹³² Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

Tabelle 10-80: Szenarien der Energieeinsparung Teil 2 der Gemeinde Saxen

	Allgeme	ines			Szena	ario 1			Szena	ario 2	
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[]	[]	[]	bei MFG [kWh/a]	[]	[]	[]
					Dämmung d	der Außenwänd	le				
1-2 Whg.	196	109	2,82	32.407	97.221	324.071	648.142	48.611	145.832	486.106	972.213
3-10 Whg.	128	70	1,00	628	20.925	25.319	31.597	628	20.925	25.319	31.597
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				33.035	118.146	349.390	679.739	49.238	166.757	511.426	1.003.810
					Thermiso	che Sanierung					
1-2 Whg.	196	67	2,82	48.171	144.512	481.706	963.412	72.256	216.768	722.559	1.445.118
3-10 Whg.	128	42	1,00	942	31.388	37.979	47.396	942	31.388	37.979	47.396
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				49.112	175.900	519.685	1.010.808	73.198	248.155	760.538	1.492.514
					Gesan	ntsanierung					
1-2 Whg.	196	46	2,82	55.910	167.730	559.100	1.118.200	83.865	251.595	838.650	1.677.300
3-10 Whg.	128	29	1,00	1.081	36.038	43.606	54.417	1.081	36.038	43.606	54.417
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				56.991	203.768	602.706	1.172.617	84.946	287.633	882.256	1.731.717

¹³³ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

10.1.17 Waldhausen im Strudengau

Tabelle 10-81: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Waldhausen im Strudengau

	Sanierungs	potential gesamt		
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential
Wohngebäude mit 1-2 Whg.	682	1,05%	72	610
Wohngebäude mit 3-10 Whg.	14	1,85%	3	11
Wohngebäude mit >10 Whg.	1	2,91%	0	1
Summe	697		75	622

Tabelle 10-82: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Waldhausen im Strudengau

	Sanierungspotential 1945-1980												
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential									
Wohngebäude mit 1-2 Whg.	254	1,05%	27	227									
Wohngebäude mit 3-10 Whg.	5	1,85%	1	4									
Wohngebäude mit >10 Whg.	0	2,91%	0	0									
Summe	259		28	231									

Tabelle 10-83: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Waldhausen für einzelne Sanierungsmaßnahmen

Art des	Ø						Sanierunç	gsmaßnal	nmen				
Wohn- gebäu- des	HWB [kWh /m²a]	Tausch von Fenstern und Außentüren		Dämmung der Kellerdecke		Dämmung der Geschoßdecke		Dämmung der Außenwände		Thermische Sanierung		Gesamtsanierung	
		HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]
1-2 Whg.	199	176	687.627	175	719.631	178	647.984	111	2.665.692	67	3.973.514	46	4.596.474
3-10 Whg.	120	106	20.053	108	17.438	106	20.925	67	76.726	42	113.345	29	132.526
>10 Whg.	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ			707.681		737.069		668.910		2.742.417		4.086.859		4.729.000

Tabelle 10-84: Szenarien der Energieeinsparung Teil 1 der Gemeinde Waldhausen

	Allgeme	ines			Szena	ario 1			Szena	ario 2	
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[]	[]	[]	bei MFG [kWh/a]	[]	[]	[]
					Tausch von I	Fenster und Tü	ren				
1-2 Whg.	199	176	4,54	13.753	41.258	137.525	275.051	20.629	61.886	206.288	412.576
3-10 Whg.	120	106	1,00	451	5.013	8.172	12.684	451	5.013	8.172	12.684
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				14.204	46.271	145.697	287.735	21.080	66.900	214.460	425.260
					Dämmung	der Kellerdeck	е				
1-2 Whg.	199	175	4,54	14.393	43.178	143.926	287.853	21.589	64.767	215.889	431.779
3-10 Whg.	120	108	1,00	392	4.359	7.106	11.029	392	4.359	7.106	11.029
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				14.785	47.537	151.032	298.882	21.981	69.126	222.995	442.808
					Dämmung d	er Geschoßdec	ke				
1-2 Whg.	199	178	4,54	12.960	38.879	129.597	259.194	19.440	58.319	194.395	388.791
3-10 Whg.	120	106	1,00	471	5.231	8.527	13.235	471	5.231	8.527	13.235
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				13.431	44.110	138.124	272.429	19.910	63.550	202.922	402.026

¹³⁴ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

Tabelle 10-85: Szenarien der Energieeinsparung Teil 2 der Gemeinde Waldhausen

	Allgeme	ines			Szena	ario 1		Szenario 2			
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[]	[]	[]	bei MFG [kWh/a]	[]	[]	[]
					Dämmung	der Außenwänd	le				
1-2 Whg.	199	111	4,54	53.314	159.942	533.138	1.066.277	79.971	239.912	799.708	1.599.415
3-10 Whg.	120	67	1,00	1.726	19.181	31.266	48.529	1.726	19.181	31.266	48.529
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				55.040	179.123	564.404	1.114.806	81.697	259.094	830.973	1.647.944
					Thermis	che Sanierung					
1-2 Whg.	199	67	4,54	79.470	238.411	794.703	1.589.406	119.205	357.616	1.192.054	2.384.108
3-10 Whg.	120	42	1,00	2.550	28.336	46.188	71.691	2.550	28.336	46.188	71.691
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				82.021	266.747	840.891	1.661.096	121.756	385.952	1.238.242	2.455.799
					Gesan	ntsanierung					
1-2 Whg.	199	46	4,54	91.929	275.788	919.295	1.838.590	137.894	413.683	1.378.942	2.757.885
3-10 Whg.	120	29	1,00	2.982	33.132	54.004	83.823	2.982	33.132	54.004	83.823
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				94.911	308.920	973.299	1.922.413	140.876	446.814	1.432.947	2.841.707

¹³⁵ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

10.1.18 Windhaag bei Perg

Tabelle 10-86: Sanierungspotential aller Gebäudetypen und Bauperioden für die Gemeinde Windhaag

Sanierungspotential gesamt								
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential				
Wohngebäude mit 1-2 Whg.	302	1,05%	32	270				
Wohngebäude mit 3-10 Whg.	16	1,85%	3	13				
Wohngebäude mit >10 Whg.	0	2,91%	0	0				
Summe	318		35	283				

Tabelle 10-87: Sanierungspotential Hauptwohnsitze der Periode 1945 bis 1980 aller Gebäudetypen für die Gemeinde Windhaag

Sanierungspotential 1945-1980							
Gebäude	Anzahl der Gebäude	Sanierungsrate $\delta^{\it G}$	Sanierte Gebäude bis 2010	Sanierungs- potential			
Wohngebäude mit 1-2 Whg.	109	1,05%	11	98			
Wohngebäude mit 3-10 Whg.	6	1,85%	1	5			
Wohngebäude mit >10 Whg.	0	2,91%	0	0			
Summe	115		12	103			

Tabelle 10-88: Einsparungspotential für Gebäude der Bauperiode 1945-1980 an Heizwärme der Gemeinde Windhaag für einzelne Sanierungsmaßnahmen

Art des	Ø		Sanierungsmaßnahmen										
Wohn- gebäu- des	HWB [kWh /m²a]	Fens	isch von stern und Sentüren		mung der lerdecke		mung der hoßdecke		mung der enwände		ermische nierung	Gesa	mtsanierung
		HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]	HWB neu	Δ [kWh/a]
1-2 Whg.	194	172	289.174	173	278.398	172	286.352	108	1.114.104	66	1.653.707	46	1.922.611
3-10 Whg.	120	106	25.067	108	21.797	106	26.156	67	95.907	42	141.681	29	165.658
>10 Whg.	0	0	0	0	0	0	0	0	0	0	0	0	0
Σ			314.241		300.195		312.508		1.210.011		1.795.388		2.088.269

Tabelle 10-89: Szenarien der Energieeinsparung Teil 1 der Gemeinde Windhaag

Allgemeines			Szenario 1				Szenario 2				
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[]	[]	[]	bei MFG [kWh/a]	[]	[]	[]
					Tausch von I	Fenster und Tü	ren				
1-2 Whg.	194	172	1,96	5.783	17.350	57.835	115.670	8.675	26.026	86.752	173.505
3-10 Whg.	120	106	1,00	602	5.013	9.225	15.241	602	5.013	9.225	15.241
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				6.385	22.364	67.059	130.910	9.277	31.039	95.977	188.745
					Dämmung	der Kellerdeck	е				
1-2 Whg.	194	173	1,96	5.568	16.704	55.680	111.359	8.352	25.056	83.519	167.039
3-10 Whg.	120	108	1,00	523	4.359	8.021	13.253	523	4.359	8.021	13.253
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				6.091	21.063	63.701	124.612	8.875	29.415	91.541	180.291
					Dämmung d	er Geschoßdec	ke				
1-2 Whg.	194	172	1,96	5.727	17.181	57.270	114.541	8.591	25.772	85.906	171.811
3-10 Whg.	120	106	1,00	628	5.231	9.626	15.903	628	5.231	9.626	15.903
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				6.355	22.412	66.896	130.444	9.218	31.003	95.531	187.714

¹³⁶ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

Tabelle 10-90: Szenarien der Energieeinsparung Teil 2 der Gemeinde Windhaag

	Allgeme	ines			Szena	ario 1			Szena	ario 2	
Art des Wohn-	ø HWB	[kWh/a]	Anzahl	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]	Δ bei δ bzw. nach 2013	Σ 2013 [kWh]	Σ 2020 [kWh]	Σ 2030 [kWh]
gebäudes	Vor Sanierung	Nach Sanierung		bei MFG [kWh/a]	[]	[]	[]	bei MFG [kWh/a]	[]	[]	[]
					Dämmung (der Außenwänd	de				
1-2 Whg.	194	108	1,96	22.282	66.846	222.821	445.641	33.423	100.269	334.231	668.462
3-10 Whg.	120	67	1,00	2.302	19.181	35.294	58.312	2.302	19.181	35.294	58.312
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				24.584	86.028	258.115	503.953	35.725	119.451	369.525	726.774
					Thermise	che Sanierung					
1-2 Whg.	194	66	1,96	33.074	99.222	330.741	661.483	49.611	148.834	496.112	992.224
3-10 Whg.	120	42	1,00	3.400	28.336	52.139	86.142	3.400	28.336	52.139	86.142
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				36.474	127.559	382.880	747.625	53.012	177.170	548.251	1.078.366
					Gesan	ntsanierung					
1-2 Whg.	194	46	1,96	38.452	115.357	384.522	769.045	57.678	173.035	576.783	1.153.567
3-10 Whg.	120	29	1,00	3.976	33.132	60.962	100.720	3.976	33.132	60.962	100.720
>10 Whg.	0	0	0,00	0	0	0	0	0	0	0	0
				42.428	148.488	445.484	869.764	61.654	206.167	637.745	1.254.287

¹³⁷ Anzahl der jährlich zu sanierenden Ein- und Zweifamilienwohngebäude bzw. Anzahl der zu sanierenden Mehrfamiliengebäude bis inkl. 2013

10.2 Ergänzung Schwerpunkt 1 – Altbausanierung von öffentlichen Gebäuden und Einfamilienhäusern sowie Möglichkeiten der Sanierung bei denkmalgeschützten Objekten

Diese Umsetzungsmaßnahme ist eng mit jener zur Verankerung des Energiespar-Gedankens in der Strudengauer Messe verbunden, denn Bewusstseinsbildungs- und Informationsmaßnahmen sind ein wesentliches Element der Durchführung dieses Schwerpunkts. Die Entwicklung dieser Schwerpunktsetzung basiert wiederum auf den Ergebnissen der EGEM-Erhebung und der Potentialerhebung im Rahmen des vorliegenden Umsetzungskonzeptes.

Obwohl bei dieser Umsetzungsmaßnahme die Sanierung von Einfamilienhäusern eine tragende Rolle spielt, wird ein zusätzlicher Fokus auch auf die thermische Sanierung von öffentlichen Gebäuden gelegt, um richtungsweisende Vorzeigebeispiele zu geben. Von den Gemeinden der Energieregion wurden teilweise die Energieausweise der öffentlichen Gebäude bereitgestellt. Bei Durchsicht der Energieausweise fiel auf, dass doch mehrere Gebäude einen Heizwärmebedarf von 150 bis über 200 kWh/m²a aufweisen. Es muss an dieser Stelle auch erwähnt werden, dass einige Gemeinden bereits das ein oder andere Gebäude saniert haben oder in den nächsten Jahren eine Sanierung planen. Die Umsetzung von Gebäudesanierungen im Bereich der öffentlichen Einrichtungen trägt nicht nur wesentlich zur Realisierung eines Einsparungspotentials in der Region bei, sondern die öffentlichen Entscheidungsträger sind dazu angehalten, mit gutem Beispiel voranzugehen um ein Zeichen zu setzen. Damit leisten diese auch einen Beitrag zur Bewusstseinsbildung in der Region.

Ein Spezialgebiet stellt die thermische Sanierung von denkmalgeschützten Gebäuden dar. In den Gemeinden der Energieregion Strudengau, vor allem in Grein und Perg gibt es zahlreiche denkmalgeschützte Gebäude. Für eine Sanierung kommen unter anderem Pfarrhöfe, historische Bürgerhäuser oder alte Schulgebäude in Betracht. Wie aufwändig die Sanierung eines denkmalgeschützten Gebäudes ist, hängt auch wesentlich davon ab, ob das gesamte Gebäude denkmalgeschützt ist oder nur ein Teil davon. Nichtsdestotrotz ist die Sanierung eines denkmalgeschützten Gebäudes aufwändiger und auch kostenintensiver. Zudem bedarf diese spezielles Know-How und Planungsmaßnahmen. Ziel dieser Umsetzungsmaßnahme ist es unter anderem auch die Revitalisierung von denkmalgeschützten Gebäuden zu forcieren und in der Region Strudengau diesbezüglich Know-How aufzubauen, welches auf andere Regionen mit ähnlichen Problemstellungen übertragen werden kann.

Ziel dieser Umsetzungsmaßnahme ist bis 2020 eine Komplettsanierung des öffentlichen Gebäudebestandes in der Region erreicht zu haben. Im Vorfeld der Umsetzung muss es eine Anlaufstelle für die Gemeinden geben, die etwaige Fördereinreichungen koordiniert bzw. über aktuelle Förderungen für Gemeinde im Bereich der thermischen Sanierung informiert ist. Diese Aufgabe kann von der Energieregion Strudengau GmbH übernommen werden. Da in der Region bereits Sanierungen an öffentlichen Gebäuden vorgenommen wurden, sollte auch die informative Aufbereitung von zumindest einem Sanierungsbeispiel aus den letzten Jahren erfolgen. Dadurch kann unter Umständen das Interesse von weiteren Gemeinden geweckt werden. Allgemein muss festgestellt werden, dass die Entwicklungen zukünftig stark von den lukrierbaren Förderungen abhängig sein wird, da die finanzielle Lage der Gemeindehaushalte derzeit als angespannt zu bezeichnen ist und Sanierungsmaßnahmen nur dann gesetzt werden, wenn sich daraus ein deutlicher wirtschaftlicher Nutzen ergibt. Als Ziel für die Projektlaufzeit bis 2013 sollte angestrebt werden, zumindest 2 öffentliche Gebäude saniert zu haben. Dabei könnte das alte Gemeindehaus in Allerheiligen ein erstes Objekt für eine Sanierung darstellen, da diese Gemeinde im Rahmen der

Erhebungen zum Umsetzungskonzept angab, dieses Gebäude in einigen Jahren sanieren zu wollen. Um derartige Sanierungsvorhaben umsetzen zu können, bedarf es einer aktiven Bewerbung von Sanierungsmaßnahmen durch den Energiemanager bzw. im vorliegenden Fall durch die Energieregion Strudengau GmbH. An dieser Stelle muss erwähnt werden, dass der Kima- und Energiefonds eine Förderung für Mustersanierungen an öffentlichen Gebäuden für Gemeinden innerhalb von Klima- und Energie-Modellregionen gewährt. Voraussetzung ist neben der Sanierung eines Gebäudes, der Einsatz erneuerbarer Energien, die Energieeffizienzsteigerung und ein Energieeffizienzmonitoring. Es gelten die Angaben im Förderleitfaden "Mustersanierung 2012". Da die Einreichfrist mit 19.10.2012 abläuft, werden die Gemeinden der Klima- und Energie-Modellregion zu Überlegungen in den Sommermonaten angehalten, ob sie von dieser Förderung Gebrauch machen wollen.

Im Bereich der Sanierung von denkmalgeschützten Gebäuden, muss es innerhalb der Projektlaufzeit Ziel sein, zumindest ein denkmalgeschütztes Gebäude in der Region zu identifizieren, das sich für eine Sanierung oder Revitalisierung eignet und die Besitzer auch Interesse an einer thermischen Sanierung bekunden. Anschließend muss eine umfangreiche Planungsphase starten, die unter anderem auch dazu dient Know-How in der Region aufzubauen, um dieses in weiterer Folge an anderen Regionen mit ähnlichen Vorhaben weiterzugeben. Die Durchführung einer thermischen Sanierung bei einem denkmalgeschützten Gebäude in der Region soll auch zu einem Leuchtturmprojekt werden, das über die Regionsgrenzen hinaus bekannt werden soll. Für die Entwicklung von Know-How kann unter anderem auf Vorarbeiten aus dem Bereich der ökologischen Sanierung von denkmalgeschützten Gebäuden zurückgegriffen werden.

An dieser Stelle muss hier eine Arbeit im Rahmen der Programmlinie "Haus der Zukunft" erwähnt werden, welche sich mit dem Einsatz von Passivhaustechnologien zur ökologischen Sanierung eines denkmalgeschützten Gebäudes in Bad Ischl beschäftigt. Dabei werden unterschiedliche Sanierungsvarianten vorgestellt. Bei einer Sanierungsvariante werden nur jene Bauteile getauscht, die untauglich sind. Es werden unter anderem der desolate Dachstuhl und die Leichtbauwände durch bauordnungskonforme Bauteile ersetzt. Für diese Sanierungsvariante wurde ein jährlicher Heizwärmebedarf von 150 kWh/m² ermittelt. Die anderen beiden Sanierungsvarianten sehen jeweils eine Dämmung der Außenwände sowie den Einsatz von Passivhaustechnologien wie beispielsweise einer Abluftwärmerückgewinnung vor. Dabei unterscheiden sich die Varianten in Art und Stärke der Dämmung. Mit einer Außendämmung mit 20 cm Stärke sowie dem Umbau der Leichtbauwände und der Erneuerung des Daches nach Passivhausstandard sinkt der jährliche Heizwärmebedarf auf 24 kWh/m². Im Falle der Anwendung einer Innendämmung in 8 cm Stärke sinkt der jährliche Heizwärmebedarf auf 38 kWh/m². Zusätzlich zu diesen Maßnahmen wird auch eine Sanierung der Kastenfenster durch Austausch des Glases vorgenommen sowie die Gebäudebeheizung auf regenerative Energieträger umgestellt. Dafür ist ein Holzpelletskessel vorgesehen mit aufgesetztem Stirlingmotor. Im Rahmen der thermischen Gebäudesimulation hat dieses Gebäude auch ein geringer Kühlbedarf ergeben, Erdwärmetiefensonde gedeckt werden kann. 138

Für die weitere Bearbeitung dieser Umsetzungsmaßnahme sollte geprüft werden, ob ein Erfahrungsaustausch mit den Bearbeitern des beschriebenen Projekts möglich ist. Wenn diese sich bereit erklären, kann auch ein Informationsabend zum Thema Sanierung von

¹

¹³⁸ Vgl. Hofbauer, W. (2009) et al: Ökologische Sanierung eines denkmalgeschützten Gebäudes mit Passivhaustechnologien. Gebäudesanierung im Spannungsfeld zwischen Denkmalschutz und neuesten Passivhaustechnologien. Wien, 2009.

denkmalgeschützten Gebäuden mit den interessierten Gemeinden angestrebt werden. Die Herausforderung für diese Maßnahme wird zunächst die Findung von geeigneten Gebäuden sein, deren Eigentümer auch bereit sind, eine Sanierung tatsächlich in Angriff zu nehmen. Des Weiteren muss, um ein tatsächliches Leuchtturmprojekt in der Region zu schaffen, eine Menge Know-How zur Sanierung von denkmalgeschützten Bauten angehäuft werden, das in weiterer Folge auch überregional verwertet werden kann. Zur Bewältigung dieser Herausforderungen bedarf es eines kompetenten Energiemanagements, welches durchaus von der Energieregion Strudengau GmbH übernommen werden kann.

Bereits in der Vergangenheit lag der Fokus in der Energieregion Strudengau auf der Altbausanierung. Dies zeigt sich unter anderem auch in der Vielzahl der öffentlichen Gebäude, die in der Region bereits saniert wurden. Dennoch bestehen in der Region noch einige Gebäude, die erst einer Sanierung unterzogen werden müssen. In Tabelle 10-91 wird der Heizwärmebedarf jener öffentlicher Gebäude gezeigt, für die ein Energieausweis erstellt wurde und die erst in jüngerer Vergangenheit erbaut wurden bzw. noch unsaniert sind. Für die öffentlichen Gebäude der Gemeinden Rechberg und Waldhausen ist ein alternativer Energieausweis existent aus dem allerdings der Heizwärmebedarf nicht ablesebar ist. Bis auf jene Gebäude, die erst in den letzten 10 Jahren errichtet wurden, sollte in den nächsten Jahren auf alle Fälle eine Sanierung angedacht werden, insbesondere dann, wenn es sich um ein Bürogebäude, eine Schule oder Wohngebäude handelt.

Tabelle 10-91: Unsanierte Gebäude bzw. Neubauten in der Energieregion Strudengau

Gemeinde	Gebäude	HWB _{unsaniert} [kWh/m2.a]	Anmerkung
	Gemeindeamt	116	
Allerheiligen	Altes Gemeindehaus	unbekannt	Sanierung in einigen Jahren geplant
	Bauhof	391	
Arbing	Bürogebäude	174	
	Friseur	227	
	Jugendtreff/Wohngebäude	259	
	Kindergarten	255	
	Wohngebäude	170	
Dimbach	Einfamilienhaus in Gemeindebesitz	283	
	Mehrzweckgebäude	60	erbaut 2002
	Mehrzweckgebäude Zubau	84	
Klam	Wohngebäude	54	erbaut 2001
	Feuerwehrhaus	51	erbaut 2009
Mitterkirchen	Volksschule	64	
	Gemeindeamt	92	
Münzbach	Gemeindeamt	59	
Pabneukirchen	Kindergarten	61	erbaut 2009
rapileukirchen	Volksschule		noch kein Energieausweis vorhanden

	Gemeindeamt		noch kein Energieausweis vorhanden
Dora	Bezirkssporthalle	122	
Perg	Hauptschule 2	138	
	KUZ und Musikheim	67	
	Landesmusikschule	62	
	Polytechnische Schule	50	erbaut 2000
Saxen	Hauptschule	78	Dachausbau 2007
	Volksschule/Kindergarten	125	
St. Nikola	Gemeindezentrum	39	erbaut 2008

Quelle: eigene Darstellung auf Basis von Energieausweisen und Auskünften der Gemeinden

Neben den noch unsanierten Gebäuden bzw. den Neubauten der letzten 10 Jahre, existieren in der Region Gebäude, die bereits saniert wurden. Die sanierten öffentlichen Gebäude werden in Tabelle 10-92 dargestellt. Es handelt sich dabei um Gebäude die in der Vergangenheit, vor Start des Projekts "Klima- und Energie-Modellregion Strudengau" saniert wurden. Teilweise ist der Heizwärmebedarf vor der Sanierung aufgrund des Fehlens eines Energieausweises unbekannt.

Tabelle 10-92: Bereits sanierte Gebäude in der Energieregion Strudengau

Gemeinde	Gebäude	HWB _{unsaniert} [kWh/m ² .a]	HWB _{saniert} [kWh/m².a]
Arbing	Volksschule	157	62
Dimbach Feuerwehrhaus		-	95
Klam			96

Quelle: eigene Darstellung auf Basis Energieausweise und Informationen der Gemeinden

Während der Projektlaufzeit und der Erstellung des vorliegenden Umsetzungskonzeptes wurden nachfolgend gezeigte Gebäude saniert:

10.2.1 Sanierungsprojekt Münzbach

Durch eine 14-cm-Dämmung der Außenwände und die Erneuerung des Daches samt Wärmedämmmaßnahme konnte der Heizwärmebedarf des Münzbacher Amtsgebäudes auf ca. die Hälfte des ursprünglichen Bedarfs gesenkt werden.

Tabelle 10-93: Kennzahlen des Amtsgebäudes Münzbach vor und nach der Sanierung

Wichtige Kennzahlen	Vorher	Nachher
Energiekennzahl	97 kWh/(m²a)	55 kWh/(m²a)
Heizwärmebedarf	57.764 kWh/a	32.753 kWh/a

Theoretischer Heizölverbrauch	5.780	3.280
Baukosten		
Dämmung der Außenwände		€ 40.000,00
Erneuerung des Daches inkl. Wärmedämmung		€ 75.000,00

Quelle: eigene Berechnungen und Darstellung.

Das Wohngebäude des Amtsleiters in Münzbach wurde zum Teil abgerissen und mit einem Neubau ergänzt. Durch die Sanierungsmaßnahmen konnte der jährliche Heizwärmebedarf von 201 kWh/(m²a) auf nur 40 kWh/(m²a) gesenkt werden. Zusätzlich wurde eine Photovoltaikanlage auf 63 m² der Fassade mit einer Leistung von 8 kW_{peak} installiert.

Tabelle 10-94: Kennzahlen des Wohngebäude Münzbach vor und nach der Sanierung

Wichtige Kennzahlen	Vorher	Nachher
Energiekennzahl	201 kWh/(m²a)	40 kWh/(m²a)

Quelle: eigene Berechnungen und Darstellung.

Die Sanierung des Schul- und Kindergartengebäudes wird derzeit durchgeführt. Im Moment ist die thermische Sanierung der Außenwände noch offen. Nach vollendeter Sanierung soll ein Heizwärmebedarf von 66 kWh/(m²a) erreicht werden.

Tabelle 10-95: Kennzahlen des Schul- und Kindergartengebäudes Münzbach vor und nach der Sanierung

Wichtige Kennzahlen	Geplant
Energiekennzahl	66 kWh/(m²a)
Heizwärmebedarf	127.710 kWh/a
Theoretischer Heizölverbrauch	12.770 l

Quelle: eigene Berechnungen und Darstellung.

10.2.2 Sanierungsprojekt Windhaag

Bei der Sanierung der Windhaager Volkschule wurden die Außenwände, die Kellerdecke und die oberste Geschoßdecke gedämmt, sowie die alten Fenster und Türen ausgetauscht. Dadurch konnten ca. drei Viertel des Heizwärmebedarfs eingespart werden.

Tabelle 10-96: Kennzahlen der Volksschule Windhaag vor und nach der Sanierung

Heizwärmebedarf	Derzeit	Geplant
Energiekennzahl	202 kWh/(m²a)	52 kWh/(m²a)
Heizwärmebedarf	214.180 kWh/a	54.673 kWh/a
Theoretischer Heizölverbrauch	21.418	5.467 l

Quelle: eigene Berechnungen und Darstellung.

Auch das an die Volksschule angrenzende Wohngebäude wurde saniert. Wie bei der Schule wurden auch hier die gleichen Bauteile saniert bzw. ausgetauscht. Für das Wohngebäude ergab sich durch diese Maßnahmen eine Reduktion des Heizwärmeverbrauchs um drei Viertel.

Tabelle 10-97: Kennzahlen des Wohngebäudes der Gemeinde Windhaag vor und nach der Sanierung

Wichtige Kennzahlen	Derzeit	Geplant
Energiekennzahl	190 kWh/(m²a)	42 kWh/(m²a)
Heizwärmebedarf	41.333 kWh/a	9.469 kWh/a
Theoretischer Heizölverbrauch	4.133 l	947

Quelle: eigene Berechnungen und Darstellung.

10.2.3 Sanierungsprojekt Mauthausen

Das 1975 erbaute Gebäude wurde zwischen 2008 und 2009 um einen Saal samt Eingangsfoyer erweitert und das Verbindungsgebäude zwischen Pfarrhof und Pfarrheim abgerissen. Dieses Best-Practice-Beispielgebäude wurde, mit Einsatz von ressourcenschonenden Baustoffen, auf Passivhausstandard saniert und konnte so den Energiebedarf auf 4,3% des bisherigen Verbrauchs reduzieren, was durch die neu installierte Pelletsheizung abgedeckt wird. Durch diese Maßnahme werden jährlich ca. 45 to CO₂ eingespart.

Im ganzen Gebäude wurde auf stromsparende Lösungen geachtet. So wurden sowohl Energiesparlampen und Leuchtstoffröhren installiert, als auch energieeffiziente Elektrogeräte angeschafft. Für ein energiesparendes Zusammenspiel sorgt eine intelligente Licht- und Lüftungssteuerung. Am Dach des Gebäudes wurde eine Photovoltaikanlage mit einer Leistung von 3 kW_{peak} errichtet, die einen Teil des Strombedarfs abdeckt, für den Rest wird Ökostrom bezogen. Zusätzlich wurde ein Regenwassernutzungssystem eingebaut.

Tabelle 10-98: Kennzahlen des Pfarrheims Mauthausen vor und nach der Sanierung

Wichtige Kennzahlen	Vorher	Nachher
Energiekennzahl	195 kWh/(m²a)	8,3 kWh/(m²a)
Heizwärmebedarf	183.100 kWh/a	6.134 kWh/a
Theoretischer Heizölverbrauch	18.310 l	613
Baukosten		
Gesamte Baukosten		€ 1.800.000

Quelle: eigene Berechnungen und Darstellung.

Wie in der Tabelle klar ersichtlich, werden nach der Sanierung nur noch 4,3% der zuvor verwendeten Heizenergie zur Gebäudeheizung benötigt. In Heizöläquivalent bedeutet dies eine Einsparung von 17.700 l.

10.2.4 Sanierungsprojekt Allerheiligen

Die Gemeinde Allerheiligen sanierte 2009 das Volkschulgebäude. Durch die Dämmung der Außenwände und der obersten Geschoßdecke konnte die Hälfte der zuvor benötigten Heizenergie eingespart werden.

Tabelle 10-99: Kennzahlen der Volksschule Allerheiligen vor und nach der Sanierung

Heizwärmebedarf	Vorher	Nachher
Energiekennzahl	120 kWh/(m²a)	62 kWh/(m²a)
Heizwärmebedarf	111.435 kWh/a	59.437 kWh/a
Theoretischer Heizölverbrauch	11.140 l	5.940

Quelle: eigene Berechnungen und Darstellung.

Durch die thermische Sanierung der angeführten Objekte wurden Best-Practice-Beispiele für die Bereiche Büro-, Wohn- und Schulgebäude geschaffen.

Neben Sanierungsprojekt wurden in der Region auch bereits effiziente Neubauprojekte verwirklicht bzw. werden in naher Zukunft realisiert. In Mitterkirchen wurde beispielsweise im Jahr 2004 ein Passivhaus errichtet, das als Best-Practice Beispiel gelten kann. Das Einfamilienhaus wurde in Zusammenarbeit mit Baumeister Krückl aus Perg errichtet, der auch ein Energiecard Unternehmen darstellt. Die Bauherren berichten, dass damals großen Skepsis in der Gemeinde bezüglich des Funktionieren eines Passivhauses herrschte. Ein Artikel im Magazin "Energieregion" zeigt Eindrücke aus dem errichteten Passivhaus und stellt dieses als moderne Art zu Wohnen dar. Derartige Best-Practice Beispiele sind oftmals der erste Schritt, um weitere Interessenten für diese energiesparende Bauweise zu gewinnen. Zudem konnte Baumeister Krückl, so seine Aussage in

einem Interview eine erste Erfahrung im Bereich des Passivhausbaus machen.¹³⁹ Dies trägt dazu bei, dass in der Region Know-How angesammelt wird, welches zum einen an die Bevölkerung weitergegeben werden kann und zum anderen auch über die Region hinausgetragen werden kann. Im nachfolgenden Kapitel wird ein innovatives Siedlungsprojekt vorgestellt, dass im Rahmen der Klima- und Energie-Modellregion umgesetzt wird und als Vorzeigeprojekt für andere Regionen dienen kann.

10.2.5 Sanierungsprojekt Waldhausen

Bei diesem Sanierungsprojekt handelt es sich um ein Einfamilienhaus, dass nach Niedrigstenergiestandard saniert werden soll. Die Energiekennzahl soll nach der Sanierung 29 kWh/m²/a betragen. Vor Sanierung beträgt die Energiekennzahl 128 kWh/m²/a. Der Sanierungsplan umfasst eine Heizung mittels Luft-Wärmepumpe und Integration einer kontrollierten Wohnraumlüftung mit Wärmerückgewinnung. Im Wohn-Großraum des Hauses ist ein Specksteinofen zur Spitzenlastabdeckung installiert. Zur Beheizung dieses Ofens werden pro Heizsaison ca. 3 bis 4 m³ Brennholz verbrannt. Zur hauseigenen Stromproduktion befindet sich am Dach des Hauses eine Photovoltaikanlage mit einer Leistung von rund 5 kW_{peak}. Für dieses umfassende Sanierungsprojekt fielen Investitionskosten in Höhe von rund 430.000 € an. Dass dieses Projekt eines der Vorzeigeprojekte im Bereich der thermischen Sanierung in der merkt man auch daran, dass Region Strudengau ist, dieses Wohngebäude Sanierungsinteressenten der ausführenden Unternehmen besichtigt wird.

10.2.6 Siedlungsprojekt Münzbach – Entwicklung eines Ökodorfes

In der Gemeinde Münzbach wurde der Grundstein für ein Vorzeigeprojekt im Bereich des Siedlungsneubaus gelegt. Im sogennanten Marktfeld, welches am Ortsrand von Münzbach liegt, entstehen insgesamt 57 Bauparzellen, die von Interessenten ab sofort reserviert bzw. gekauft werden können. Derzeit sind bereits 9 Parzellen fix an junge Häuslbauer vergeben. Weitere 6 Parzellen hat eine Baufirma aus Perg reserviert. Es ist geplant Reihenhäuser an diesem Standort zu errichten. Diese sollen als "Blue-Energy-Häuser" ausgeführt werden. Dabei handelt es sich um Niedrigstenergiehäuser mit autarker Energieversorgung.

Das Konzept des "Blue-Energy-Hauses" wurde vom Perger Baumeisterunternehmen Krückl in Zusammenarbeit mit Architekturbüro Haderer in Linz entwickelt. Dabei handelt es sich um ein neuartiges Konzept für ein Niedrigstenergiehaus, das auch bereits in die Realität umgesetzt wurde. In Gutau wurden bereits 4 Reihenhäuser in dieser Bauweise fertiggestellt und erfolgreich an die Frau bzw. den Mann gebracht. Das Besondere an den "Blue-Energy-Häusern" ist eine autarke Stromversorgung. Die Häuser produzieren jene Strommenge, die ein repräsentativer Haushalt in Österreich verbraucht. Dies geschieht zum einen mittels Photovoltaik-Anlage und zum anderen über eine Wärmepumpe. Zudem verfügen die Häuser über einen Anschluss zum Aufladen eines Elektroautos. Auf diese Weise werden nicht nur Ressourcen geschont und eine effiziente Energieversorgung auf Basis erneuerbarer Energien gewährleistet, sondern die Hauseigentümer können auch Betriebskosten sparen.

Münzbach hat Der Gemeinderat in angesichts der Frage nach einer alternativen Energieversorgung und energieeffizienten Wohnen beschlossen, eine Energieversorgung in Form einer Fernwärmeleitung für die geplante Neubausiedlung zu schaffen. Die Wärmeversorgung ist zum einen durch die Biogasanlage Münzbach und zum anderen durch

¹³⁹ Vgl. Energieregion Strudengau Magazin, Ausgabe 1/2010

die Firma Greisinger sowie die Nahwärme-Genossenschaft sichergestellt. Auf diese Weise entsteht im Marktfeld in Münzbach eine Ökosiedlung. Aufgrund der vorhandenen Wärmeproduzenten in der Gemeinde ist es des Weiteren nahe liegend das auch das Ortszentrum von Münzbach an das geplante Fernwärmenetz angebunden werden soll.

Insgesamt wurden für das Projetk 48.000 m² Fläche angekauft, wobei sich die tatsächlich verwertbare Fläche auf 39.000 m² beläuft. Daraus ergeben sich 50 neue Bauparzellen und es sind 5 "Blue Energy Häuser" in Form von Doppelhäusern geplant. Nachfolgend wird ein Foto des Grundstücks sowie des Parzellenplans gezeigt.

Abbildung 10-1: Das sogenannte "Marktfeld" in Münzbach

Quelle: Gemeinde Münzbach

Abbildung 10-1 zeigt eine Ansicht des Grundstücks auf dem die 50 Parzellen für die Errichtung einer Öko-Siedlung zur Verfügung stehen. Dieses befindet sich am Ortsrand von Münzbach. Die geografische Lage des Grundstücks macht auch die Errichtung des geplanten Fernwärmenetzes aufgrund der Leitungsverluste schwierig. Daher kann es sein, dass von der Versorgung der Siedlung mittels Fernwärmenetz abgesehen werden muss. Tritt dieser Fall ein, so haben die Projektverantwortlichen bereits eine Lösung, wie trotzdem eine Energieversorgung der entstehenden Siedlung auf Basis erneuerbarer Energieträger sichergestellt werden kann. Derzeit ist geplant, in den Kaufverträgen für die Bauparzellen zu verankern, dass keine Heizsysteme auf fossilen Brennstoffen eingebaut werden dürfen. Dies schließt Erdgasbrennwertkessel aus, obwohl diese gemäß der Regelungen der oberösterreichischen Wohnbauförderung akzeptiert werden. In Abbildung 10-2 ist die Aufteilung der Bauparzellen im "Marktfeld" dargestellt.

Sportplatz

Abbildung 10-2: Parzellenplan der geplanten Öko-Siedlung in Münzbach

Quelle: Gemeinde Münzbach

Durch den integrativen Ansatz von energie- und flächensparendem Bauen und Energieerzeugung auf Basis erneuerbarer Quellen, kann das Konzept der "Ökosiedlung Münzbach" auch auf andere Modellregion übertragen werden. Aus diesem Grund wird es nach Abschluss dieses Projekts auch Aufgabe des Energieregionsmanager sein, die Ergebnisse des Projekts publik und auch außerhalb des Strudengaus bekannt zu machen.

10.3 Ergänzung Schwerpunkt 5 – Verankerung des Energiespar-Gedankens in der Strudengau-Messe als Anstoß zur Sanierung

Die Strudengauer Messe ist eine traditionsreiche Veranstaltung, die demnach auch sehr gut in der Region verankert ist und unter der Bevölkerung einen guten Ruf genießt. Nach Angaben des Veranstalters können jährlich ca. 10.000 Besucher gezählt werden. Somit hat sich diese Messeveranstaltung in der Region Strudengau bereits zu einer Plattform für die lokale und regionale Wirtschaft entwickelt. Die Messe soll auch die innovationsorientierte Weiterentwicklung der regionalen Unternehmen, aber auch der Landwirtschaft fördern. Zudem hat sich die Strudengauer Messe im Laufe der Zeit zu einem Fixpunkt in der Veranstaltungsgemeinde Waldhausen entwickelt und ist auch Bestandteil des sozialen Netzwerkes in der Gemeinde, aber auch in der Region.

All diese Faktoren machen die Strudengauer Messe zum idealen Ort den Energiespar-Gedanken in der Region weiter zu verankern. Im Speziellen sollen dabei die thermische Sanierung sowie die Heizungserneuerung im Vordergrund stehen. Bereits im 2009 erschienen EGEM Bericht für die Strudengauer Gemeinden wurde dargelegt, dass in der Region ein großes theoretisches Einsparpotential durch Gebäudesanierung in der Energieregion Strudengau besteht. Dieses Einsparungspotential wurde durch die Berechnungen im vorliegenden Umsetzungskonzept weiter detailliert und konkretisiert. Im EGEM-Bericht wird dargestellt, dass rund 27 % des Einsparungspotentials bei Einfamilienhäusern besteht und 37 % bei landwirtschaftlichen Gebäuden. Nicht-Wohngebäude nehmen demnach 20 % des Einsparungspotentials durch Sanierung ein und Mehrfamilienhäuser 15 %. 140 Die in diesem Abschnitt dargestellte Umsetzungsmaßnahme leistet einen wesentlichen Beitrag zur Realisierung Einsparpotentiale. Auf der Strudengauer Messe können jene Personengruppen erreicht werden, die besonders zur Realisierung der Einsparungspotentiale beitragen können, nämlich BesitzerInnen von Einfamilienhäusern und LandwirtInnen. An diesem Beispiel zeigt sich erneut, dass die Strudengauer Messe geeignet ist, um Informations- und Beratungsmaßnahmen für eine Realisierung von Sanierungspotentialen durchzuführen.

Bereits in den vergangenen Jahren fanden sich bei der Strudengauer Messe immer wieder jene Unternehmen ein, die auch bei der EnergieCard Aktion der Energieregion Strudengau GmbH teilnehmen. Allerdings präsentierten sich diese Unternehmen bisher nicht geschlossen als EnergieCard Unternehmen auf der Messe. Die Idee dieser Umsetzungsmaßnahme ist nun, die Verankerung des Energiespar-Gedankens in der Strudengau-Messe als Anstoß zur Sanierung. Dies setzt unter anderem eine gemeinsame Präsentation der Energie-Card Firmen unter dem gemeinsamen Motto der EnergieCard auf der Messe voraus.

Um dies zu erreichen ist es zum einen notwendig, möglichst viele der EnergieCard Unternehmen für eine Teilnahme an der Messe zu mobilisieren. Zum anderen muss der Standplatz groß genug gewählt werden, damit sich die Unternehmen alle an einem Platz präsentieren können. Zudem ist es auch wünschenswert, wenn genug Raum dafür ist, Tische aufzustellen, um einen offenen Austausch zwischen den Messebesuchern und den anwesenden Unternehmen stattfinden lassen zu können. Dieser Ort am Messegelände soll zentraler Anlaufpunkt für all jene werden, die Fragen zum Thema "Energie" haben. Auf diese Weise wird eine Art Messekompetenzzentrum für die energetische Sanierung geschaffen. Dabei soll der Fokus nicht nur auf jenen liegen, die sich

¹⁴⁰ Vgl. Lettner, F. (2009): Energiespargemeinden (EGEM). Projektendbericht. Münzbach, 2009.

bereits mit konkreten Plänen an die Unternehmen wenden, sondern auch der Abbau von Unsicherheiten bei Sanierungsvorhaben sein. Ziel ist es, auch Beratungsgespräche zwischen Messebesuchern und Unternehmen zu ermöglichen. Zusätzlich sollte auch der Erfahrungsaustausch zwischen den Messebesuchern beim EnergieCard Standplatz angeregt werden. So gelingt es noch mehr Praxisnähe zu schaffen und der interessierte Personenkreis gewinnt mehr Vertrauen in das eigene Sanierungsvorhaben und konkretisiert die diesbezüglichen Pläne oder der Erfahrungsaustausch initiiert den notwendigen Gedankenanstoß für jene, die noch keine Ideen in diese Richtung hatten.

den Vorbereitungen zur Messe soll eine Bewerbung des bei Messekompetenzzentrums zum Thema der energetischen Sanierung erfolgen, damit auch ein möglichst zahlreicher Zulauf von Messebesuchern gegeben ist. Da das Thema der energetischen Sanierung unterschiedliche Bereichen - von der Heizungserneuerung bis hin zur energetischen Gesamtsanierung - umfasst, muss Ziel sein, Unternehmen aus verschiedenen Branchen für die Messe zu gewinnen. Die interessierten Besucher sollen sich von Planung, über die thermische Sanierung bis hin zur Heizungsinstallation Informationen auf der Messe holen können. Dies führt einerseits zum Abbau von Unsicherheiten und andererseits kann die Messe ein Anstoß für Sanierungsplanungen sein. Für die Unternehmen ergibt sich der Vorteil, dass Interessierte über die Angebote der regionalen Unternehmen informiert werden und dadurch vermieden wird, dass potentielle Kunden ihr Sanierungsvorhaben bei Unternehmen außerhalb der Region umsetzen lassen.

Die Schaffung des Messekompetenzzentrums ist keine einmalige Sache. Von der ersten Umsetzung an, welche im Jahr 2012 geplant ist, wird es dieses Kompetenzzentrum jährlich auf der Strudengauer Messe geben. Durch eine Bewerbung der Messe inklusive dem Kompetenzzentrum auch über die regionalen Grenzen des Strudengaus hinaus, sollen auch Besucher aus den umliegenden Gemeinden angezogen werden. Auf diese Weise wird erreicht, dass der Energiespargedanke über die Regionsgrenzen hinaus getragen wird und regionale Strudengauer Unternehmen ihr Aktionsfeld weiter vergrößern können. Die Energieregion Strudengau GmbH kann zudem ihr Know-How was die Organisation und gemeinsame Präsentation von Unternehmern anbelangt weitertragen.

Mit dieser Umsetzungsmaßnahme werden drei wesentliche Ziele einer Klima- und Energie-Modellregion adressiert:

- Nachhaltige Bewusstseinsbildung und Forcierung der Eigeninitiative der BürgerInnen im Bereich des Energiesparens und im Speziellen der thermischen Sanierung.
- Stärkung der Stellung der regionale Unternehmen in der Region Strudengau sowie in weiterer Folge auch über die Regionsgrenzen hinaus.
- Aufbau eines Kompetenzpools bestehend aus Unternehmen und der Energieregion Strudengau GmbH zum Thema der thermischen Sanierung.